Seismic Sequence Stratigraphy of Tertiary Sediments, Offshore Sarawak Deep-Water Area: ABSTRACT

Author(s):  
Abdul Manaf Mohammad
2009 ◽  
Vol 252 ◽  
pp. 459-468 ◽  
Author(s):  
Laju Michael ◽  
D. Gopala Rao ◽  
K. S. Krishna ◽  
K. H. Vora

2021 ◽  
Vol 11 (11) ◽  
pp. 5156
Author(s):  
Abd Al-Salam Al-Masgari ◽  
Mohamed Elsaadany ◽  
Numair A. Siddiqui ◽  
Abdul Halim Abdul Latiff ◽  
Azli Abu Bakar ◽  
...  

This study identified the Pleistocene depositional succession of the group (A) (marine, estuarine, and fluvial depositional systems) of the Melor and Inas fields in the central Malay Basin from the seafloor to approximately −507 ms (522 m). During the last few years, hydrocarbon exploration in Malay Basin has moved to focus on stratigraphic traps, specifically those that existed with channel sands. These traps motivate carrying out this research to image and locate these kinds of traps. It can be difficult to determine if closely spaced-out channels and channel belts exist within several seismic sequences in map-view with proper seismic sequence geomorphic elements and stratigraphic surfaces seismic cross lines, or probably reinforce the auto-cyclic aggregational stacking of the avulsing rivers precisely. This analysis overcomes this challenge by combining well-log with three-dimensional (3D) seismic data to resolve the deposition stratigraphic discontinuities’ considerable resolution. Three-dimensional (3D) seismic volume and high-resolution two-dimensional (2D) seismic sections with several wells were utilized. A high-resolution seismic sequence stratigraphy framework of three main seismic sequences (3rd order), four Parasequences sets (4th order), and seven Parasequences (5th order) have been established. The time slice images at consecutive two-way times display single meandering channels ranging in width from 170 to 900 m. Moreover, other geomorphological elements have been perfectly imaged, elements such as interfluves, incised valleys, chute cutoff, point bars, and extinction surfaces, providing proof of rapid growth and transformation of deposits. The high-resolution 2D sections with Cosine of Phase seismic attributes have facilitated identifying the reflection terminations against the stratigraphic amplitude. Several continuous and discontinuous channels, fluvial point bars, and marine sediments through the sequence stratigraphic framework have been addressed. The whole series reveals that almost all fluvial systems lay in the valleys at each depositional sequence’s bottom bars. The degradational stacking patterns are characterized by the fluvial channels with no evidence of fluvial aggradation. Moreover, the aggradation stage is restricted to marine sedimentation incursions. The 3D description of these deposits permits distinguishing seismic facies of the abandoned mud channel and the sand point bar deposits. The continuous meandering channel, which is filled by muddy deposits, may function as horizontal muddy barriers or baffles that might isolate the reservoir body into separate storage containers. The 3rd, 4th, and 5th orders of the seismic sequences were established for the studied succession. The essential geomorphological elements have been imaged utilizing several seismic attributes.


2021 ◽  
Vol 40 (3) ◽  
pp. 186-192
Author(s):  
Thomas Krayenbuehl ◽  
Nadeem Balushi ◽  
Stephane Gesbert

The principles and benefits of seismic sequence stratigraphy have withstood the test of time, but the application of seismic sequence stratigraphy is still carried out mostly manually. Several tool kits have been developed to semiautomatically extract dense stacks of horizons from seismic data, but they stop short of exploiting the full potential of seismo-stratigraphic models. We introduce novel geometric seismic attributes that associate relative geologic age models with seismic geomorphological models. We propose that a relative sea level curve can be derived from the models. The approach is demonstrated on a case study from the Lower Cretaceous Kahmah Group in the northwestern part of Oman where it helps in sweet-spotting and derisking elusive stratigraphic traps.


2021 ◽  
Author(s):  
◽  
Jan Robert Baur

<p>This study investigates the nature, origin, and distribution of Cretaceous to Recent sediment fill in the offshore Taranaki Basin, western New Zealand. Seismic attributes and horizon interpretations on 30,000 km of 2D seismic reflection profiles and three 3D seismic surveys (3,000 km²) are used to image depositional systems and reconstruct paleogeography in detail and regionally, across a total area of ~100,000 km² from the basin's present-day inner shelf to deep water. These data are used to infer the influence of crustal tectonics and mantle dynamics on the development of depocentres and depositional pathways. During the Cretaceous to Eocene period the basin evolved from two separate rifts into a single broad passive margin. Extensional faulting ceased before 85 Ma in the present-day deep-water area of the southern New Caledonia Trough, but stretching of the lithosphere was higher (β=1.5-2) than in the proximal basin (β<1.5), where faulting continued into the Paleocene (~60 Ma). The resulting differential thermal subsidence caused northward tilting of the basin and influenced the distribution of sedimentary facies in the proximal basin. Attribute maps delineate the distribution of the basin's main petroleum source and reservoir facies, from a ~20,000 km²-wide, Late Cretaceous coastal plain across the present-day deep-water area, to transgressive shoreline belts and coastal plains in the proximal basin. Rapid subsidence began in the Oligocene and the development of a foredeep wedge through flexural loading of the eastern boundary of Taranaki Basin is tracked through the Middle Miocene. Total shortening within the basin was minor (5-8%) and slip was mostly accommodated on the basin-bounding Taranaki Fault Zone, which detached the basin from much greater Miocene plate boundary deformation further east. The imaging of turbidite facies and channels associated with the rapidly outbuilding shelf margin wedge illustrates the development of large axial drainage systems that transported sediment over hundreds of kilometres from the shelf to the deep-water basin since the Middle Miocene. Since the latest Miocene, south-eastern Taranaki Basin evolved from a compressional foreland to an extensional (proto-back-arc) basin. This structural evolution is characterised by: 1) cessation of intra-basinal thrusting by 7-5 Ma, 2) up to 700 m of rapid (>1000 m/my) tectonic subsidence in 100-200 km-wide, sub-circular depocentres between 6-4 Ma (without significant upper-crustal faulting), and 3) extensional faulting since 3.5-3 Ma. The rapid subsidence in the east caused the drastic modification of shelf margin geometry and sediment dispersal directions. Time and space scales of this subsidence point to lithospheric or asthenospheric mantle modification, which may be a characteristic process during back-arc basin development. Unusual downward vertical crustal movements of >1 km, as inferred from seismic facies, paleobathymetry and tectonic subsidence analysis, have created the present-day Deepwater Taranaki Basin physiography, but are not adequately explained by simple rift models. It is proposed that the distal basin, and perhaps even the more proximal Taranaki Paleogene passive margin, were substantially modified by mantle processes related to the initiation of subduction on the fledgling Australia-Pacific plate boundary north of New Zealand in the Eocene.</p>


Sign in / Sign up

Export Citation Format

Share Document