Alluvial-Fan Deposition and Tectonic Significance of Two Late Cretaceous-Paleocene Conglomerates in North-Central Utah Thrust Belt: ABSTRACT

AAPG Bulletin ◽  
1979 ◽  
Vol 63 ◽  
Author(s):  
G. A. Crawford, R. H. Dott, Jr.
1986 ◽  
Vol 32 (110) ◽  
pp. 60-64 ◽  
Author(s):  
John England

AbstractA large valley, ideally suited for “selective linear erosion” by ice, extends from the Kreiger Mountains to Tanquary Fiord, north–central Ellesmere Island. During the last glaciation, the outlet glacier at the head of the valley advanced 18 km and was at least 250 m thick where it contacted the sea in the lower valley. Erosion of bedrock inside the last ice limit is recorded by an abraded diabase dike, and by crag–and–tail features developed in limestone. During deglaciation (7800 B.P.), melt–water streams along the ice margin incised a large alluvial fan that pre–dates the last glaciation. The fan shows little alteration by the over–riding ice and its final erosion by the melt–water streams incised, but did not remove, its original ice–wedge polygons.The preservation of the fan indicates that the glacier was locally non–erosive and that it probably advanced across the fan by over–riding a protective frontal ice apron. Although it is commonly assumed that such alluvial fans occupying glaciated valleys are of post–glacial age, this need not be the case in permafrost terrain. In fact, at this site, there has been a net increment of alluvium versus glacial erosion or deposition spanning the last glacial cycle. The paper discusses the processes of erosion associated with sub–polar glaciers and questions whether erosion by them or more pervasive ice is responsible for such High Arctic valleys and fiords.


2020 ◽  
Author(s):  
Saskia Köhler ◽  
Florian Duschl ◽  
Hamed Fazlikhani ◽  
Daniel Köhn

<p>The Franconian Basin in SE Germany has seen a complex stress history indicative of several extensional and compressional phases e.g. the Iberia-Europe collision acting on a pre-faulted Variscan basement. Early Cretaceous extension is followed by Late Cretaceous inversion with syntectonic sedimentation and deformation increasing progressively from SW to NE culminating in the Franconian Line where basement rocks are thrusted over the Mesozoic cover. The development of this intracontinental fold-and-thrust belt is followed by Paleogene extension associated with the formation of the Eger Graben, which is then succeeded by a new compressional event as a consequence of the Alpine orogeny.</p><p>We use existing data from literature and geological maps and new field data to construct balanced cross-sections in order to reveal the architecture of the Cretaceous fold-and-thrust belt. In addition, we undertake paleostress analysis using a combination of fault slip information, veins and tectonic and sedimentary stylolites to identify stress events in the study area, as well as their nature and timing. Furthermore, we try to understand how basement faults influence younger faults in the cover sequence.</p><p>Our paleostress data indicates that at least five different stress events existed in Mesozoic to Cenozoic times (from old to young): (1) an N-S directed extensional stress field with E-W striking normal faults, (2) a NNE-SSW directed compressional stress field causing thrusting and folding of the cover sequence, (3) a strike slip regime with NE-SW compression and NW-SE extension, (4) an extensional event with NW-SE extension and the formation of ENE-WSW striking faults according to the formation of the Eger Graben in the E, and finally (5) a strike slip regime with NW-SE compression and NE-SW extension related to Alpine stresses. The geometry of faulting and deformation varies significantly over the regions with respect to the influence of and distance to inherited Variscan structures.</p><p>We argue that the extensional event of stress field (1) provides spacing for Early Cretaceous sedimentation in the Franconian Basin. This is followed by the creation of an intracontinental fold-and-thrust belt during stress fields (2) and (3) with a slight rotation of the main compressive stress during these events in Late Cretaceous. We associate the following extension to the development of the Eger Graben in Miocene time. Finally, a NW-SE directed compression related to Alpine stresses in an intracontinental strike-slip regime is following. Reconstruction of the Cretaceous fold-and-thrust belt reveals mainly fault propagation folding with deep detachments sitting below the cover sequence indicating thick-skinned tectonics. We argue that the Franconian Line is a thrust with a steeply dipping root that belongs to the same fold-and-thrust belt.</p>


Sign in / Sign up

Export Citation Format

Share Document