Analysis of the Impact of Chinese Wood Product Manufacturers' Exports

2015 ◽  
Vol 65 (7-8) ◽  
pp. 387-394
Author(s):  
Guangyuan Qin ◽  
Baodong Cheng ◽  
Yinchu Zeng
Keyword(s):  
2015 ◽  
Vol 10 (2) ◽  
pp. 224-242 ◽  
Author(s):  
Minli Wan ◽  
Katja Lähtinen ◽  
Anne Toppinen

Purpose – China is a leading country in the production, consumption and exports of value-added wood products. Despite this fact, the sources of competitiveness and the existing strategies in the Chinese wood products companies have not been profoundly studied in an international context. The purpose of this paper is to fill these gaps by exploring managerial perceptions of these issues. Design/methodology/approach – The theoretical ingredients originating from the value chain theory, functional upgrading, the dynamic capability perspective and the natural resource-based view were combined to explore the shift of business functions and sources of the firm-level competitiveness in the Chinese wood products companies. In the empirical part, data from qualitative semi-structured interviews made with 28 managers of seven companies in China based on the case study method were used. Findings – Our results indicate a transition from non-branded manufacturing to original equipment manufacturing to original brand manufacturing business model. With this strategic transformation, the amount of resources and the relative importance of intangible resources increased and the nature of tangible resources also changed. Practical implications – Chinese companies tend to shift from low-value-added to high-value-added products production. Our results are not only informative about the current situation of the Chinese wood products companies, but also can be used as a background for assessing the impact of China’s increasing competitiveness on the future international wood products market. Originality/value – The dynamic capability perspective was incorporated in a new empirical approach to study the strategic management of woodworking industries, and our results provide new information on the importance of intangible resources for firm competitiveness.


2019 ◽  
Vol 11 (14) ◽  
pp. 3961
Author(s):  
Chenlu Tao ◽  
Jinzhu Zhang ◽  
Baodong Cheng ◽  
Yu Liu

The influence of industrial agglomeration on corporate export behavior has been widely studied by both industry and academia. However, few studies have explored the impact of the spatial agglomeration of China’s wood processing industry on the quality of its products at the micro level. In this study, we analyzed data from the China Customs Database to determine the quality of wood processing industry products at the enterprise level. Then, we matched the China Customs Database with the data in the China Industrial Enterprise Database. Based on this, we analyzed the impact of the spatial agglomeration on the quality of wood products using panel data regression. According to our results, spatial agglomeration of the wood processing industry can significantly improve product quality. Also, private enterprises are more likely to benefit from the advantages conferred by agglomeration than state-owned enterprises. Moreover, trade method does not significantly modulate the effect of spatial agglomeration on the quality of wood products. Last but not least, the agglomeration has the most significantly positive impact on the quality of products produced by the wood chip processing industry, followed by the wood products industry and the wood panel industry. Agglomeration of the bamboo and rattan palm industry actually decreases product quality. Therefore, we encourage agglomeration of timber processing enterprises, especially privately owned wood chip, wood product, and wood panel enterprises, to fully realize the benefits of the agglomeration economy. We also make policy recommendations to improve wood product quality.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
Lucien F. Trueb

Crushed and statically compressed Madagascar graphite that was explosively shocked at 425 kb by means of a planar flyer-plate is characterized by a black zone extending for 2 to 3 nun below the impact plane of the driver. Beyond this point, the material assumes the normal gray color of graphite. The thickness of the black zone is identical with the distance taken by the relaxation wave to overtake the compression wave.The main mechanical characteristic of the black material is its great hardness; steel scalpels and razor blades are readily blunted during attempts to cut it. An average microhardness value of 95-3 DPHN was obtained with a 10 kg load. This figure is a minimum because the indentations were usually cracked; 14.8 DPHN was measured in the gray zone.


Sign in / Sign up

Export Citation Format

Share Document