scholarly journals Structural Analysis of a Transport Aircraft Wing

2021 ◽  
Vol 13 (1) ◽  
pp. 3-9
Author(s):  
Yassir ABBAS ◽  
Tariq ELSONNI ◽  
Abdul Aziz ABDULMAJID ◽  
Alnazir KHALAFALLH ◽  
Mohammed ALNAZIR

In this study the procedures of structural analysis of a typical transport aircraft wing has been followed. The wing model has been drawn using CATIA® V5; this model consists of several structural components such as spars, ribs and skin. The model has been exported into structural analysis software ANSYS® 2016. Stresses, strains, deformations and safety factors were obtained for the model. It is found that the obtained stresses caused by the aerodynamic loads on the wing are within the design structural limits where the failure by yield or buckling has not been occurred

2021 ◽  
Vol 13 (4) ◽  
pp. 113-128
Author(s):  
Paul MEYRAN ◽  
Hugo PAIN ◽  
Ruxandra Mihaela BOTEZ ◽  
Jeremy LALIBERTÉ

This study aims to design a morphing winglet structure for the CRJ-700 regional transport aircraft. The morphing technology is applied on winglets to demonstrate a significant increase of the aerodynamic performance of aircraft. From the aerodynamic data of the LARCASE Virtual Research Simulator VRESIM, the aerodynamic benefits in the cruising phase were obtained through a study on the ParaView software. The morphing winglet design was drawn using CATIA V5; this new concept included several structural components, as well as a simple and light mechanism allowing to orientate the winglet angles between 90° and -90° of inclination. The structural model was exported to HyperMesh structural analysis software. Maximum stresses were obtained, and the model demonstrated its resistance to maximum aerodynamic loads as well as load factors of -2G to 7G.


Author(s):  
Christopher Dean ◽  
Girum Urgessa ◽  
Mohammad Azarbayejani

Aircrafts have evolved significantly throughout the years, in large part to advances in technology. As technology grows, analytical models of aircrafts have become more accurate and play a more significant role in the design process. This paper examines the integration of commonly used mathematical and structural analysis software to conduct parametric studies on aircraft wing design and aerodynamics analysis for class project. The forces considered in this study include engine, fuel, and lift forces. The engine force is evaluated as a constant point load throughout the duration of the flight, while the fuel weight is changed throughout the flight as it was being consumed. The MATLAB algorithm is set up to analyze one fuel force input which is distributed evenly over the wing at a location where the fuel tank is located. The lift force is estimated using the Schrenk Approximation and the MATLAB algorithm is then used to distribute the lift force over the area of the wing. The methodology developed in this paper shows the potential of efficiently use non-aerodynamic software to produce a detailed preliminary structural analysis of an aircraft wing and the ability to use it in classroom projects.


2011 ◽  
Vol 1 (7) ◽  
pp. 89-91
Author(s):  
Mitul Patel ◽  
◽  
Sharvil Shah ◽  
Dharmendra Dubey
Keyword(s):  

2020 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
El Mehdi Echebba ◽  
Hasnae Boubel ◽  
Oumnia Elmrabet ◽  
Mohamed Rougui

Abstract In this paper, an evaluation was tried for the impact of structural design on structural response. Several situations are foreseen as the possibilities of changing the distribution of the structural elements (sails, columns, etc.), the width of the structure and the number of floors indicates the adapted type of bracing for a given structure by referring only to its Geometric dimensions. This was done by studying the effect of the technical design of the building on the natural frequency of the structure with the study of the influence of the distribution of the structural elements on the seismic response of the building, taking into account of the requirements of the Moroccan earthquake regulations 2000/2011 and using the ANSYS APDL and Robot Structural Analysis software.


2021 ◽  
Vol 1057 (1) ◽  
pp. 012027
Author(s):  
Govindu Sandhya ◽  
Vemireddy Sri Rishitha ◽  
S Sriram ◽  
VM Sreehari

2012 ◽  
Vol 568 ◽  
pp. 39-42
Author(s):  
Yu Zhuo Jia ◽  
Li Lin

SAP2000 structural analysis software is used to designed two of 500kV partially prestressed reactive powder concrete pole cross arm; moreover, poles of the two cross arm program have been compared. The results show that the triangular truss cross arm has good mechanical properties, improving the main mate’rial of the stress state, the pole reduced height 10m, by the analysis of the structure shows, this cross arm has higher reliability under the operating conditions, which can be used in 500kV transmission line; from economic and technical performance, the pole cost of this program is greatly reduced, while speeding up the construction progress and improving the comprehensive benefits of the poles in the transmission line.


Sign in / Sign up

Export Citation Format

Share Document