scholarly journals Optimal data processing strategy in precise GPS leveling networks

2013 ◽  
pp. 443-452 ◽  
Author(s):  
Katarzyna Stepniak
2015 ◽  
Vol 5 ◽  
Author(s):  
Hiroshi Tsugawa ◽  
Erika Ohta ◽  
Yoshihiro Izumi ◽  
Atsushi Ogiwara ◽  
Daichi Yukihira ◽  
...  

2007 ◽  
Author(s):  
Hiroshi Watanabe ◽  
Hironari Ishihara ◽  
Keiichiro Ninomiya ◽  
Kaduo Hiraki ◽  
Tsuneo Matsunaga ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 2659
Author(s):  
Zhengtao Wang ◽  
Kunjun Tian ◽  
Fupeng Li ◽  
Si Xiong ◽  
Yu Gao ◽  
...  

The Gravity Recovery and Climate Experiment (GRACE) satellite provides time-varying gravity field models that can detect total water storage change (TWSC) from April 2002 to June 2017, and its second-generation satellite, GRACE Follow-On (GRACE-FO), provides models from June 2018, so there is a one year gap. Swarm satellites are equipped with Global Positioning System (GPS) receivers, which can be used to recover the Earth’s time-varying gravitational field. Swarm’s time-varying gravitational field models (from December 2013 to June 2018) were solved by the International Combination Service for Time-variable Gravity Field Solutions (COST-G) and the Astronomical Institute of the Czech Academy of Sciences (ASI). On a timely scale, Swarm has the potential to fill the gap between the two generations of GRACE satellites. In this paper, using 26 global watersheds as the study area, first, we explored the optimal data processing strategy for Swarm and then obtained the Swarm-TWSC of each watershed based on the optimal results. Second, we evaluated Swarm’s accuracy in detecting regional water storage variations, analyzed the reasons for its superior and inferior performance in different regions, and systematically explored its potential in detecting terrestrial water storage changes in land areas. Finally, we constructed the time series of terrestrial water storage changes from 2002 to 2019 by combining GRACE, Swarm, and GRACE-FO for the Amazon, Volga, and Zambezi Basins. The results show that the optimal data processing strategy of Swarm is different from that of GRACE. The optimal results of Swarm-TWSC were explored in 26 watersheds worldwide; its accuracy is related to the area size, runoff volume, total annual mass change, and instantaneous mass change of the watershed itself, among which the latter is the main factor affecting Swarm-TWSC. Knowledge of the Swarm-TWSC of 26 basins constructed in this paper is important to study long-term water storage changes in basins.


2021 ◽  
Vol 20 (3) ◽  
pp. 1476-1487
Author(s):  
Nicolas Sénécaut ◽  
Gelio Alves ◽  
Hendrik Weisser ◽  
Laurent Lignières ◽  
Samuel Terrier ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (16) ◽  
pp. 8714-8727 ◽  
Author(s):  
Taofang Cheng ◽  
Ji Ye ◽  
Huiliang Li ◽  
Hongyuan Dong ◽  
Ning Xie ◽  
...  

An integrated strategy for the comprehensive characterization of known, unknown and coeluting isomeric compounds of compound Dan Zhi Tablets.


Sign in / Sign up

Export Citation Format

Share Document