Removal of Decay Heat from a Plate-Type Fuel Subassembly in the Atmosphere

1958 ◽  
Vol 3 (5) ◽  
pp. 529-539
Author(s):  
R. E. Grimble ◽  
B. W. LeTourneau
Keyword(s):  
2016 ◽  
Vol 06 (04) ◽  
pp. 217-231
Author(s):  
Miguel Luiz Miotto Negro ◽  
Michelangelo Durazzo ◽  
Marco Aurélio de Mesquita ◽  
Elita Fontenele Urano de Carvalho ◽  
Delvonei Alves de Andrade

2021 ◽  
Vol 9 ◽  
Author(s):  
Huijian Huang ◽  
Chong Chen ◽  
Luguo Liu ◽  
Yu Liu ◽  
Linfeng Li ◽  
...  

Plate-type fuel elements is one of the first fuel structure choice for the novel integrated PWR, however, blisters will appear on the cladding induced by irradiation and fission. In this work CFD method was used to investigate the subcooled boiling characteristic of the water in rectangle channel with round and pillow blisters, the modified RPI model was also proposed, we can draw conclusions as follows: In the channel with round blister, as the blisters will increase the local flow resistance and more fluid will flow through center of the channel. Boiling occurred only in the area near the edges, nearly no vapor appeared at the center of the channel. The boiling region in channel with pillow shape blisters is wider and concentrated between two pillow blisters and downstream of the non-blisters side. The dry out area are both in the downstream region of blisters for the two types of channels.


2018 ◽  
Vol 20 (3) ◽  
pp. 123
Author(s):  
Reinaldy Nazar ◽  
Sudjatmi KA ◽  
Ketut Kamajaya

Due to TRIGA fuel elements are no longer produced by General Atomic, it is necessary to find a solution so that the Bandung TRIGA 2000 reactor can still be operated. One solution is to replace the type of fuel elements. Study on using the MTR plate type fuel elements as used in RSG-GAS Serpong has been done for the Bandung TRIGA 2000. Based on the results of the study using CFD computer program, it is found that Bandung TRIGA 2000 with plate type fuel elements cannot be operated up to 2000 kW power by natural convection cooling mode. Therefore, the reactor must be cooled by forced convection. The analysis using forced convection showed that for cooling flow rate of 50 kg/s and various temperatures of 35oC, 35.5 oC and 36 oC, the surface temperature of the fuel element is between 110.37 oC and 111.27 oC. Meanwhile, the cooling water temperature in the corresponding position is between 61.03 oC and 61.95 oC. In this operation condition, the surface temperatures of fuel elements can approach the saturation temperature and nucleat boiling started to occur. Hence, the use of cooling flow rate entering core less than 50 kg/s should be avoided. The surface temperature of fuel elements decreased under saturation temperature if cooling flow rate is greater than 65 kg/s. The surface temperature of fuel elements is achieved at 96.65 oC and coolant temperature in the corresponding position was 54.38 oC. Keywords: Bandung research reactor, plate type fuel element, thermohydraulic, CFD code ANALISIS TERMOHIDROLIK TERAS REAKTOR RISET BANDUNG BERELEMEN BAKAR TIPE PELAT MENGGUNAKAN PROGRAM CFD. Mengingat tidak diproduksinya lagi elemen bakar TRIGA oleh General Atomic, maka perlu diusahakan suatu solusi agar reaktor TRIGA 2000 Bandung dapat tetap beroperasi. Salah satu solusi adalah dengan melakukan penggantian tipe elemen bakar. Pada studi ini telah dianalisis penggunaan elemen bakar tipe pelat yang sejenis dengan yang digunakan di RSG-GAS Serpong, untuk digunakankan pada teras reaktor TRIGA 2000 Bandung. Berdasarkan hasil penelitian yang telah dilakukan dengan menggunakan program komputer CFD, diketahui bahwa reaktor TRIGA berelemen bakar tipe pelat tidak dapat dioperasikan pada daya 2000 kW dengan menggunakan moda pendinginan konveksi alamiah seperti yang digunakan saat ini. Untuk kondisi ini, pendinginan dilakukan dengan moda pendinginan konveksi paksa. Hasil analisis konveksi paksa menunjukkan bahwa dengan menggunakan laju alir pendingin pompa 50 kg/s dan variasi temperatur pada 35 oC, 35,5 oC dan 36 oC, diperoleh temperatur permukaan pelat elemen bakar antara 110,37 oC – 111,27 oC dan temperatur pendinginnya pada posisi terkait antara 61,03 oC – 61,95 oC. Temperatur permukaan pelat elemen bakar ini mendekati temperatur saturasi dan tentunya telah mulai terjadi pendidihan inti, sehingga penggunaan laju alir pendingin masuk teras reaktor kurang dari 50 kg/s perlu dihindari. Temperatur permukaan pelat elemen bakar mulai menurun menjauhi temperatur saturasi jika digunakan laju alir pendingin lebih besar dari 65 kg/s, dengan temperatur permukaan pelat elemen bakar 96,65 oC dan temperatur pendinginnya pada posisi terkait 54,38 oC.Kata kunci: Reaktor riset Bandung, elemen bakar tipe pelat, termohidrolik, program CFD


1970 ◽  
Vol 12 (2) ◽  
pp. 231-248 ◽  
Author(s):  
P.J. Kreyger ◽  
W.A. Essler ◽  
W. Dellmann

Author(s):  
Yiqi Yu ◽  
Elia Merzari ◽  
Jerome Solberg

In nuclear reactors that use plate-type fuel, the fuel plates are thermally managed with coolant flowing through channels between the plates. Depending on the flow rates and sizes of the fluid channels, the hydraulic forces exerted on a plate can be quite large. Currently, there is a worldwide effort to convert research reactors that use highly enriched uranium (HEU) fuel, some of which are plate-type, to low-enriched uranium (LEU). Because of the proposed changes to the fuel structure and thickness, a need exists to characterize the potential for flow-induced deflection of the LEU fuel plates. In this study, as an initial step, calculations of Fluid-Structure Interaction (FSI) for a flat aluminum plate separating two parallel rectangular channels are performed using the commercial code STAR-CCM+ and the integrated multi-physics code SHARP, developed under the Nuclear Energy Advanced Modeling and Simulation program. SHARP contains the high-fidelity single physics packages Diablo and Nek5000, both highly scalable and extensively validated. In this work, verification studies are performed to assess the results from both STAR-CCM+ and SHARP. The predicted deflections of the plate agree well with each other as well as exhibiting good agreement with simulations performed by the University of Missouri utilizing STAR-CCM+ coupled with the commercial structural mechanics code ABAQUS. The study provides a solid basis for FSI modeling capability for plate-type fuel element with SHARP.


Author(s):  
Yangbin Deng ◽  
Dalin Zhang ◽  
Qing Lu ◽  
Yingwei Wu ◽  
Wenxi Tian ◽  
...  

In this paper, the occurrence mechanism of blistering was studied and development processes of blistering were summarized. In addition, a thermal-mechanic-material coupling analysis code, named FROBA-PLATEs (Fuel Rod Behavior Analysis for PLATEs), was developed for plate-type fuel with the consideration of burnup effect. FROBA-PLATEs code was applied to perform the behavior analysis of a dispersion-plate-type fuel. Significant phenomena, including fission gas release and matrix damage, were simulated and key parameters, such as temperature profile, stress and strain profile, were obtained. Most important of all, the starting time of blistering was gained according to the deformation of cladding. The result indicates that: blistering happened at high burnup stage; power density and thickness of cladding are sensitive parameters for blistering. Reducing the power density or enlarge the thickness of cladding can delay or prevent blistering. Furthermore, the influence of blistering on thermal-hydraulic performance was preliminarily investigated by CFD simulation. The simulation result indicates that blistering results in deterioration of heat conduction in the fuel plate.


Sign in / Sign up

Export Citation Format

Share Document