An Implicit Second-Order Numerical Method for Three-Dimensional Two-Phase Flow Calculations

1998 ◽  
Vol 130 (2) ◽  
pp. 213-225 ◽  
Author(s):  
I. Toumi ◽  
D. Caruge
Author(s):  
Aline B. Figueiredo ◽  
David E. G. P. Bueno ◽  
Renan M. Baptista ◽  
Felipe B. F. Rachid ◽  
Gustavo C. R. Bodstein

The ability to produce accurate numerical simulations of transient two-phase flows in gas pipelines has long been an important issue in the oil industry. A reliable prediction of such flows is a difficult task to accomplish due to the numerous sources of uncertainties, such as the basic two-phase flow model, the flow-pattern models, the initial condition and the numerical method used to solve the system of partial differential equations. Several numerical methods, conservative or not, of first- and second-order accuracies may be used to discretize the problem. In this paper we use the flux-corrected transport (FCT) finite-difference method to solve a one-dimensional single-pressure four-equation two-fluid model for the two-phase flow that occurs in a nearly horizontal pipeline characterized by the stratified-flow pattern. Because the FCT algorithm is of indeterminate order, we use a test case to assess the spatial and time accuracies for the specific class of hyperbolic problem that we obtain with the modeling employed here. The results show that the method is first order in time and second order in space, which have important consequences on the choice of mesh spacing and time step for a desired accuracy.


Author(s):  
Rik Wemmenhove ◽  
Roel Luppes ◽  
Arthur E. P. Veldman ◽  
Tim Bunnik

The growing transport of LNG in partially filled tanks raises the demand to have accurate methods to predict the fluid behaviour in these sloshing tanks and the effect of the sloshing fluid on the tanker motion. To examine the motion of the sloshing fluid, model experiments have been carried out on a scale of 1:10. Different tank filling ratios and types of motion have been tested to study the sloshing fluid behaviour for various sea states. The model experiments have been carried out to provide extensive validation material for the numerical method ComFLOW. The details of this improved Volume Of Fluid (iVOF) method are presented in the paper. The method resolves the governing equations in both fluids, one of them being compressible. The compressibility of the second phase is especially important for more violent flow conditions, when two-phase phenomena such as air entrapment and air entrainment occur frequently. Particular attention in the numerical method has been paid to the treatment of the flow variables around the interface, especially the density. The fluid is convected by means of a first-or second-order upwind scheme. The behaviour of the sloshing fluid strongly depends upon the regularity of the tank motion and the filling ratio of the tank. Video frames, wave probes and pressure transducers have been used to compare the fluid flow of simulation and experiment. Two-phase effects such as air entrapment are more common for increasing tank filling ratios and for more irregular tank motion. A realistic simulation of these effects is possible by modeling two-phase flow, especially when using a relatively fine grid and applying the less-dissipative second-order upwind scheme. Compared to the earlier paper on the numerical simulation of sloshing in LNG tanks [8], where the numerical method was validated for regular sway motion, more extensive attention is paid to the accuracy of the applied discretisation schemes in space and time. The results of different schemes are now evaluated for both regular and irregular sway and roll motion of LNG tanks.


2001 ◽  
Vol 166 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Rachel Caiden ◽  
Ronald P. Fedkiw ◽  
Chris Anderson

2002 ◽  
Vol 124 (3) ◽  
pp. 481-488 ◽  
Author(s):  
M. Burger ◽  
G. Klose ◽  
G. Rottenkolber ◽  
R. Schmehl ◽  
D. Giebert ◽  
...  

Polydisperse sprays in complex three-dimensional flow systems are important in many technical applications. Numerical descriptions of sprays are used to achieve a fast and accurate prediction of complex two-phase flows. The Eulerian and Lagrangian methods are two essentially different approaches for the modeling of disperse two-phase flows. Both methods have been implemented into the same computational fluid dynamics package which is based on a three-dimensional body-fitted finite volume method. Considering sprays represented by a small number of droplet starting conditions, the Eulerian method is clearly superior in terms of computational efficiency. However, with respect to complex polydisperse sprays, the Lagrangian technique gives a higher accuracy. In addition, Lagrangian modeling of secondary effects such as spray-wall interaction enhances the physical description of the two-phase flow. Therefore, in the present approach the Eulerian and the Lagrangian methods have been combined in a hybrid method. The Eulerian method is used to determine a preliminary solution of the two-phase flow field. Subsequently, the Lagrangian method is employed to improve the accuracy of the first solution using detailed sets of initial conditions. Consequently, this combined approach improves the overall convergence behavior of the simulation. In the final section, the advantages of each method are discussed when predicting an evaporating spray in an intake manifold of an internal combustion engine.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2399 ◽  
Author(s):  
Fengbo Yang ◽  
Xinyu Xue ◽  
Chen Cai ◽  
Zhu Sun ◽  
Qingqing Zhou

In recent years, multirotor unmanned aerial vehicles (UAVs) have become more and more important in the field of plant protection in China. Multirotor unmanned plant protection UAVs have been widely used in vast plains, hills, mountains, and other regions, and become an integral part of China’s agricultural mechanization and modernization. The easy takeoff and landing performances of UAVs are urgently required for timely and effective spraying, especially in dispersed plots and hilly mountains. However, the unclearness of wind field distribution leads to more serious droplet drift problems. The drift and distribution of droplets, which depend on airflow distribution characteristics of UAVs and the droplet size of the nozzle, are directly related to the control effect of pesticide and crop growth in different growth periods. This paper proposes an approach to research the influence of the downwash and windward airflow on the motion distribution of droplet group for the SLK-5 six-rotor plant protection UAV. At first, based on the Navier-Stokes (N-S) equation and SST k–ε turbulence model, the three-dimensional wind field numerical model is established for a six-rotor plant protection UAV under 3 kg load condition. Droplet discrete phase is added to N-S equation, the momentum and energy equations are also corrected for continuous phase to establish a two-phase flow model, and a three-dimensional two-phase flow model is finally established for the six-rotor plant protection UAV. By comparing with the experiment, this paper verifies the feasibility and accuracy of a computational fluid dynamics (CFD) method in the calculation of wind field and spraying two-phase flow field. Analyses are carried out through the combination of computational fluid dynamics and radial basis neural network, and this paper, finally, discusses the influence of windward airflow and droplet size on the movement of droplet groups.


2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


Sign in / Sign up

Export Citation Format

Share Document