A New Technology for the Nuclear Industry for the Complete and Continuous Pyrochemical Reprocessing of Spent Nuclear Fuel: Catalyst Enhanced Molten Salt Oxidation

2008 ◽  
Vol 163 (3) ◽  
pp. 382-400 ◽  
Author(s):  
Trevor R. Griffiths ◽  
Vladimir A. Volkovich
2019 ◽  
Vol 96 (9) ◽  
pp. 868-874
Author(s):  
O. A. Kochetkov ◽  
A. P. Panfilov ◽  
V. Yu. Usoltsev ◽  
Vladimir N. Klochkov ◽  
S. M. Shinkarev ◽  
...  

This article covers basic issues of the radiation protection in nuclear industry. It contains an overview of history of the national nuclear industry including the creation of industry-specific facilities (research centers, medical units etc.). Main stages of the creating the regulatory system for radiation protection, starting from the beginning of the industrial radiation protection, stages of introducing exposure limits and implementation of the radiation protection system in international documents are described. In 1996, for the first time, radiation protection requirements in Russia were documented in the form of the Federal Law 3-FZ of 09.01.1996 “Radiation Protection of the Public". A new stage of updating the global methodological foundation of radiation protection began in 2007. IRCP recommendations of 2007 moved from the legacy practice and intervention approach focused on the process to the approach based on characteristics of exposure situation. The evolvement of new technologies (specifically, in the field of reactor engineering and used nuclear fuel) in recent years requires a special focus on the safety of the personnel and the public. This stipulates the necessity of the appropriate radiation protection support of activities for the safe implementation of modern technologies. Handling of spent nuclear fuel and generated radioactive wastes, safe decommissioning of radiation hazardous facilities, radiation protection during operation of radiation facilities in nonstandard conditions are all the issues requiring specific examination. Regulatory and procedural documents on radiation protection of the personnel and the public during development and implementation of new technologies have been developed and approved as a result of long-term work of scientists and other professionals.


Author(s):  
Bo Yang ◽  
He-xi Wu ◽  
Yi-bao Liu

With the sustained and rapid development of the nuclear power plants, the spent fuel which is produced by the nuclear power plants will be rapidly rising. Spent fuel is High-level radioactive waste and should be disposed safely, which is important for the environment of land, public safety and health of the nuclear industry, the major issues of sustainable development and it is also necessary part for the nuclear industry activities. It is important to study and resolve the high-level radioactive waste repository problem. Spent nuclear fuel is an important component in the radioactive waste, The KBS-3 canister for geological disposal of spent nuclear fuel in Sweden consists of a ductile cast iron insert and a copper shielding. The ductile cast iron insert provides the mechanical strength whereas the copper protects the canister from corrosion. The canister inserts material were referred to as I24, I25 and I26, Spent nuclear fuel make the repository in high radiant intensity. The radiation analysis of canister insert is important in canister transport, the dose analysis of repository and groundwater radiolysis. Groundwater radiolysis, which produces oxidants (H2O2 and O2), will break the deep repository for spent nuclear fuel. The dose distribution of canister surface with different kinds of canister inserts (I24, I25 and I26) is calculated by MCNP (Ref. 1). Analysing the calculation results, we offer a reference for selecting canister inserts material.


2017 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Dion Bagus Nugraha B ◽  
Andang Widi Harto ◽  
Sihana Sihana

Molten Salt Reactor Transatomic Power (MSR TAP) is a further development of the nuclear reactor Generation IV Reactor Molten Salt Reactor (MSR). MSR TAP generates clean electric power. It has a passive safety, resistance to proliferation, and low cost. MSR TAP can consume the rest of the nuclear fuel/spent nuclear fuel (SNF) of a commercial Light Water Reactor (LWR) fuel or use the main fuel, a salt solution UF4 - LiF - BeF2. MSR TAP uses Zirconium Hydride material for the moderator. This research has a purpose to determine the optimal size of uranium mole fraction on fuel and moderator radius from core design in order to produce optimum enrichment with the value 1 < keff <1.0065 using MCNP5 program. On the other hand, this research also aims to look for the optimum enrichment, which have inherent safety characteristics with αVoid < 0. Variations were made including the changes in the geometry of the moderator radius with a variation of 0.5 cm, 1 cm, 1.5 cm, 2 cm, 2.5 cm, 3 cm, 3.5 cm, 4 cm, and 4.5 cm; and the changes in the fuel uranium molar UF4 - LiF - BeF2 with molar variation of 15%, 20%, 25% and 30%. The geometry of Transatomic Power (MSR TAP) of companies Transatomic Power Corporation was used. The results show that the optimum variation is the salt solution UF4 - LiF - BeF2 with 25 % uranium mole fraction, 2.6 % enrichment and moderator radius of 1.5 cm. The optimum variation gives the keff value of 1.00124 ± 0.00078. The optimum value of reactivity void coefficient is -0.0684. It indicates an inherently safe design.Keywords : Molten Salt Reactor Transatomic Power, MCNP5, Uranium Fuel Mole Fraction, Optimum Variation, Moderator, Inherent Safety. ANALISIS FRAKSI URANIUM DAN RASIO MODERATOR – BAHAN BAKAR PADA SQUARE LATTICED MOLTEN SALT TRANSATOMIC POWER. Molten Salt Reactor Transatomic Power (MSR TAP) merupakan reaktor nuklir pengembangan lebih lanjut dari Reaktor Generasi IV Molten Salt Reactor (MSR). Reaktor MSR TAP ini menghasilkan daya listrik yang bersih, memiliki keselamatan pasif, mempunyai resistensi terhadap proliferasi, dan memiliki biaya yang rendah. Reaktor ini dapat mengkonsumsi bahan bakar nuklir sisa/spent nuclear fuel (SNF) dari penggunaan bahan bakar Light Water Reactor (LWR) yang komersial atau menggunakan bahan bakar utama yaitu larutan garam UF4 – LiF – BeF2. Moderator yang digunakan pada MSR TAP ini adalah moderator berbahan Zirconium Hydride. Penelitian ini bertujuan untuk menentukan ukuran perbandingan nilai fraski mol uranium dan jari-jari moderator yang optimal dari dari desain teras Reaktor MSR TAP agar dihasilkan pengayaan yang optimum dengan nilai 1 < keff < 1,0065 menggunakan program MCNP5. Selain itu penelitian ini juga bertujuan mecari pengayaan optimum yang mempunyai sifat keselamatan melekat dengan . Variasi yang dilakukan meliputi perubahan geometri jari-jari moderator dengan variasi 0,5 cm, 1 cm, 1,5 cm, 2 cm, 2,5 cm, 3 cm, 3,5 cm, 4 cm, dan 4,5 cm; dan perubahan molar uranium pada bahan bakar UF4 – LiF – BeF2  dengan variasi persen molar 15%, 20%, 25%, dan 30%. Geometri reaktor yang digunakan dalam silmulasi adalah MSR TAP dari perusahaan Transatomic Power Corporation. Hasil penelitian menunjukkan variasi optimum perbandingan moderator bahan dan fraksi mol bahan bakar larutan garam UF4 – LiF – BeF2 pada fraksi mol uranium bahan bakar pada variasi molar uranium 25% dengan pengayaan 2,6% dan jari-jari moderator 1,5 cm, dengan nilai keff 1,00124±0,00078. Koefisien reaktivitas void yang didapatkan dari variasi optimum tersebut adalah -0,0684 yang menandakan bahwa desain ini telah memenuhi syarat keselamatan melekat.Kata kunci: Molten Salt Reactor Transatomic Power, MCNP5, Fraksi mol uranium, Variasi optimum, Moderator, Keselamatan melekat. 


Sign in / Sign up

Export Citation Format

Share Document