Simulation and Analysis: The Dose Distribution of KBS-3 Spent Nuclear Fuel Canister by MCNP

Author(s):  
Bo Yang ◽  
He-xi Wu ◽  
Yi-bao Liu

With the sustained and rapid development of the nuclear power plants, the spent fuel which is produced by the nuclear power plants will be rapidly rising. Spent fuel is High-level radioactive waste and should be disposed safely, which is important for the environment of land, public safety and health of the nuclear industry, the major issues of sustainable development and it is also necessary part for the nuclear industry activities. It is important to study and resolve the high-level radioactive waste repository problem. Spent nuclear fuel is an important component in the radioactive waste, The KBS-3 canister for geological disposal of spent nuclear fuel in Sweden consists of a ductile cast iron insert and a copper shielding. The ductile cast iron insert provides the mechanical strength whereas the copper protects the canister from corrosion. The canister inserts material were referred to as I24, I25 and I26, Spent nuclear fuel make the repository in high radiant intensity. The radiation analysis of canister insert is important in canister transport, the dose analysis of repository and groundwater radiolysis. Groundwater radiolysis, which produces oxidants (H2O2 and O2), will break the deep repository for spent nuclear fuel. The dose distribution of canister surface with different kinds of canister inserts (I24, I25 and I26) is calculated by MCNP (Ref. 1). Analysing the calculation results, we offer a reference for selecting canister inserts material.

Author(s):  
Krista Nicholson ◽  
John McDonald ◽  
Shona Draper ◽  
Brian M. Ikeda ◽  
Igor Pioro

Currently in Canada, spent fuel produced from Nuclear Power Plants (NPPs) is in the interim storage all across the country. It is Canada’s long-term strategy to have a national geologic repository for the disposal of spent nuclear fuel for CANada Deuterium Uranium (CANDU) reactors. The initial problem is to identify a means to centralize Canada’s spent nuclear fuel. The objective of this paper is to present a solution for the transportation issues that surround centralizing the waste. This paper reviews three major components of managing and the transporting of high-level nuclear waste: 1) site selection, 2) containment and 3) the proposed transportation method. The site has been selected based upon several factors including proximity to railways and highways. These factors play an important role in the site-selection process since the location must be accessible and ideally to be far from communities. For the containment of the spent fuel during transportation, a copper-shell container with a steel structural infrastructure was selected based on good thermal, structural, and corrosion resistance properties has been designed. Rail has been selected as the method of transporting the container due to both the potential to accommodate several containers at once and the extensive railway system in Canada.


Author(s):  
Je´roˆme Galtier

For 45 years TN International has been involved in the radioactive materials transportation field. Since the beginning the spent nuclear fuel transportation has been its core business. During all these years TN International, now part of AREVA, has been able to anticipate and fulfill the needs for new transport or storage casks designed to fit the nuclear industry evolutions. A whole fleet of casks able to transport all the materials of the nuclear fuel cycle has been developed. In this presentation we will focus on the casks used to transport the fresh and used MOX fuel. To transport the fresh MOX BWR and PWR fuel, TN International has developed two designs of casks: the MX 6 and the MX 8. These casks are and have been used to transport MOX fuel for French, German, Swiss and in a near future Japanese nuclear power plants. A complete set of baskets have been developed to optimize the loading in terms of integrated dose and also of course capacity. MOX used fuel has now its dedicated cask: the TN112 which certificate of approval has been obtained in July 2008. This cask is able to transport 12 MOX spent fuel elements with a short cooling time. The first loading of the cask has been performed in September 2008 in the EDF nuclear power plant of Saint-Laurent-des-Eaux. By its continuous involvement in the nuclear transportation field, TN International has been able to face the many challenges linked to the radioactive materials transportation especially talking of MOX fuel. TN International will also have to face the increasing demand linked to the nuclear renaissance.


2019 ◽  
pp. 82-87
Author(s):  
Ya. Kostiushko ◽  
O. Dudka ◽  
Yu. Kovbasenko ◽  
A. Shepitchak

The introduction of new fuel for nuclear power plants in Ukraine is related to obtaining a relevant license from the regulatory authority for nuclear and radiation safety of Ukraine. The same approach is used for spent nuclear fuel (SNF) management system. The dry spent fuel storage facility (DSFSF) is the first nuclear facility created for intermediate dry storage of SNF in Ukraine. According to the design based on dry ventilated container storage technology by Sierra Nuclear Corporation and Duke Engineering and Services, ventilated storage containers (VSC-VVER) filled with SNF of VVER-1000 are used, which are located on a special open concrete site. Containers VSC-VVER are modernized VSC-24 containers customized for hexagonal VVER-1000 spent fuel assemblies. The storage safety assessment methodology was created and improved directly during the licensing process. In addition, in accordance with the Energy Strategy of Ukraine up to 2035, one of the key task is the further diversification of nuclear fuel suppliers. Within the framework of the Executive Agreement between the Government of Ukraine and the U.S. Government, activities have been underway since 2000 on the introduction of Westinghouse fuel. The purpose of this project is to develop, supply and qualify alternative nuclear fuel compatible with fuel produced in Russia for Ukrainian NPPs. In addition, a supplementary approach to safety analysis report is being developed to justify feasibility of loading new fuel into the DSFSF containers. The stated results should demonstrate the fulfillment of design criteria under normal operating conditions, abnormal conditions and design-basis accidents of DSFSF components.  Thus, the paper highlights both the main problems of DSFSF licensing and obtaining permission for placing new fuel types in DSFSF.


2020 ◽  
Author(s):  
Vanessa Montoya ◽  
Orlando Silva ◽  
Emilie Coene ◽  
Jorge Molinero ◽  
Renchao Lu ◽  
...  

<p>In August 2015, the German government approved the national programme for the responsible and safe management of spent nuclear fuel (SNF) and radioactive waste proposed by the Federal Ministry for the Environment, Nature Conservation, Building and Reactor Safety (BMU). The assumption is that about ~ 1 100 storage casks (10 500 tons of heavy metal) in the form of spent fuel assemblies will be generated in nuclear power plants and will have to be disposed. However, a decision on the disposal concept for high-level waste is pending and an appropriate solution has to be developed with a balance in multiple aspects. All potential types of host rocks, clay and salt stones as well as crystalline formations are under consideration. In the decision process, evaluation of the risk of different waste management options and scenarios play an enormous role in the discussion. Coupled physical and chemical processes taking place within the engineered barrier system of a repository for high-level radioactive waste will define the radionuclide mobility/retention and the possible radiological impact. The objective of this work is to assess coupled processes occurring in the near-field of a generic repository for spent nuclear fuel in a high saline clay host rock, integrating complex geochemical processes at centimetre-scale. The scenario considers that radionuclides can be released during a period of thousands of years after full saturation of the bentonite barrier and the thermal phase.</p><p>Transport parameters and the discretization of the system, are implemented in a 2D axisymmetric geometry. The multi-barrier system is emplaced in clay and a solubility limited source term for the selected radionuclides is assumed. Kinetics and chemical equilibria reactions are simulated using parameters obtained from experiments. Additionally, porosity changes due to mineral precipitation/dissolution and feedback on the effective diffusion coefficient are taken into account. Protonation/deprotonation, ion exchange reactions and radionuclide inner-sphere sorption is considered.</p><p>Numerical simulations show, that, when the canister corrosion starts, the redox potential decreases, magnetite precipitates and H<sub>2</sub> is formed. Furthermore, the aqueous concentration of Fe(II) increases due to the presence of magnetite. By considering binding to montmorillonite via ion exchange reactions, the bentonite acts as a sink for Fe(II). Additionally, magnetite forms a chemical barrier offering significant sorption capacity for many radionuclides. Finally, a decrease of porosity in the bentonite/canister interface leads to a further deceleration of radionuclide migration. Due to the complexity of reactive transport processes in saline environments, benchmarking of reactive transport models (RTM) is important also to build confidence in those modelling approaches. Development of RTM benchmark procedures is part of the iCROSS project (Integrity of nuclear waste repository systems - Cross-scale system understanding and analysis) funded by both the Helmholtz Association and the Federal Ministry of Education and Research (BMBF).</p><p> </p>


MRS Advances ◽  
2016 ◽  
Vol 1 (61) ◽  
pp. 4075-4080
Author(s):  
Fredrik Vahlund

ABSTRACTSince 1988 the Swedish Nuclear Fuel and Waste Management Co. operates a repository for low- and intermediate-level short-lived radioactive waste, SFR, in Forsmark, Sweden. Due to decommissioning of the nuclear power plants additional storage capacity is needed. In December 2014, an application to extend the repository was therefore submitted. One key component of this application was an assessment of post-closure safety of the extended SFR. For this safety assessment, a methodology based on that developed by SKB for the spent nuclear fuel repository was used and the impact of the degradation of repository components, the evolution of the surface system and changes of future climate on the radiological safety of the repository was assessed over a period of 100,000 years. The central conclusion of the SR-PSU safety assessment is that the extended SFR repository meets requirements on protection of human health and of the environment that have been established by the Swedish radiation safety authority for the final disposal of radioactive waste. Furthermore, the design of the repository was shown suitable for the waste selected and the applied methodology suitable for the safety assessment.


2016 ◽  
Vol 722 ◽  
pp. 59-65
Author(s):  
Markéta Kočová ◽  
Zdeňka Říhová ◽  
Jan Zatloukal

Nowadays manipulation and depositing of high-level radioactive waste has become the most important issue, which needs to be solved. High-level radioactive waste consists mainly of spent fuel elements from nuclear power plants, which cannot be deposited for long time in surface repositories in the same way as it is possible in case of low and medium level radioactive waste. The most effective and safe solution in longer time horizon seems to be deep geological repository of high level waste. In this process of deposition, large amount of specific conditions needs to be taken into account while designing the whole underground complex, because the materials and structures must fulfil all necessary requirements. Then adequate safety will be ensured.


Author(s):  
Rudrapati Sandesh Kumar ◽  
Payal Shrivastava

Finding a solution for nuclear waste is a key issue, not only for the protection of the environment but also for the future of the nuclear industry. Ten years from now, when the first decisions for the replacement of existing nuclear power plants will have to be made, The general public will require to know the solution for nuclear waste before accepting new nuclear plants. In other words, an acceptable solution for the management of nuclear waste is a prerequisite for a renewal of nuclear power. Most existing wastes are being stored in safe conditions waiting for permanent solution, with some exceptions in the former Eastern Bloc. Temporary surface or shallow storage is a well known technique widely used all over the world. A significant research effort has been made by the author of this paper in the direction of underground repository. The underground repository appears to be a good solution. Trying to transform dangerous long lived radionuclides into less harmful short lived or stable elements is a logical idea. It is indeed possible to incinerate or transmute heavy atoms of long lived elements in fast breeder reactors or even in pressurised or boiling water reactors. There are also new types of reactors which could be used, namely accelerator driven systems. High level and long lived wastes (spent fuel and vitrified waste) contain a mixture of high activity (heat producing) short lived nuclides and low activity long lived alpha emitting nuclides. To avoid any alteration due to temperature of the engineered or geological barrier surrounding the waste underground, it is necessary to store the packages on the surface for several decades (50 years or more) to allow a sufficient temperature decrease before disposing of them underground. In all cases, surface (or shallow) storage is needed as a temporary solution. This paper gives a detailed and comprehensive view of the Deep Geological Repository, providing a pragmatic picture of the means to make this method, a universally acceptable one.


Author(s):  
J A Richardson

Commercial reactor nuclear power generation in the United States is produced by 107 units and, during 1996, represented over 21 per cent of the nation's electricity generation in 34 of the 50 states and, through electric power wheeling, between states in most of the 48 contiguous states. Spent fuel is stored in fuel pools at 70 sites around the country and the projected rate of spent fuel production indicates that the current pool storage will be exceeded in the out years of 2000, 2010 and 2020 at 40, 67 and 69 of these sites respectively. The total accumulation projected by the end of 1996 at reactor sites is 33 700 metric tons of heavy metal (MTHM), with projections for increasing accumulations at annual rates of between 1800 and 2000 to produce an end of life for all commercial nuclear reactors of about 86 000 MTHM. There are presently eight facilities in six states with out-of-pool dry storage amounting to 1010 MTHM and this dry storage demand will increase. Based on all current commercial reactors achieving their 40 year licensed operation lifetimes, the dry storage needs will increase to 3128 MTHM at 28 sites and 20 states by 2000 and 11 307 MTHM at 58 sites in 32 states by 2010; the year 2010 is the present scheduled operation date for the federal mined geological disposal repository being characterized by the USDOE at Yucca Mountain, Nevada. The enabling statute for the federal high-level radioactive waste management programme is the 1982 Nuclear Waste Policy Act (NWPA) which charges the USDOE with the responsibility for the disposal of HLW and spent nuclear fuel. The Act also charges the utilities with the responsibility for managing their spent nuclear fuel until the USDOE can accept it into the federal waste management system. The funding for the federal programme is also stipulated by the Act with the creation of the Nuclear Waste Fund, through which the electric utilities entered into contract with the USDOE by payment of a fee of 1 mill per kilowatt hour sold and for which the USDOE would start collection of spent fuel from the reactor sites starting 31 January 1998.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mats Jonsson

Safe long-term storage of radioactive waste from nuclear power plants is one of the main concerns for the nuclear industry as well as for governments in countries relying on electricity produced by nuclear power. A repository for spent nuclear fuel must be safe for extremely long time periods (at least 100 000 years). In order to ascertain the long-term safety of a repository, extensive safety analysis must be performed. One of the critical issues in a safety analysis is the long-term integrity of the barrier materials used in the repository. Ionizing radiation from the spent nuclear constitutes one of the many parameters that need to be accounted for. In this paper, the effects of ionizing radiation on the integrity of different materials used in a granitic deep geological repository for spent nuclear fuel designed according to the Swedish KBS-3 model are discussed. The discussion is primarily focused on radiation-induced processes at the interface between groundwater and solid materials. The materials that are discussed are the spent nuclear fuel (based on UO2), the copper-covered iron canister, and bentonite clay. The latter two constitute the engineered barriers of the repository.


2020 ◽  
pp. 62-71
Author(s):  
M. Sapon ◽  
O. Gorbachenko ◽  
S. Kondratyev ◽  
V. Krytskyy ◽  
V. Mayatsky ◽  
...  

According to regulatory requirements, when carrying out handling operations with spent nuclear fuel (SNF), prevention of damage to the spent fuel assemblies (SFA) and especially fuel elements shall be ensured. For this purpose, it is necessary to exclude the risk of SFA falling, SFA uncontrolled displacements, prevent mechanical influences on SFA, at which their damage is possible. Special requirements for handling equipment (in particular, cranes) to exclude these dangerous events, the requirements for equipment strength, resistance to external impacts, reliability, equipment design solutions, manufacturing quality are analyzed in this work. The requirements of Ukrainian and U.S. regulatory documents also are considered. The implementation of these requirements is considered on the example of handling equipment, in particular, spent nuclear fuel storage facilities. This issue is important in view of creation of new SNF storage facilities in Ukraine. These facilities include the storage facility (SFSF) for SNF from water moderated power reactors (WWER): a Сentralized SFSF for storing SNF of Rivne, Khmelnitsky and South-Ukraine Nuclear Power Plants (СSFSF), and SFSF for SNF from high-power channel reactors (RBMK): a dry type SFSF at Chornobyl nuclear power plant (ISF-2). After commissioning of these storage facilities, all spent nuclear fuel from Ukrainian nuclear power plants will be placed for long-term “dry” storage. The safety of handling operations with SNF during its preparation for long-term storage is an important factor.


Sign in / Sign up

Export Citation Format

Share Document