Statistical analysis and empirical modeling of large- and small-scale plasma drifts in Earth''s high-latitude ionosphere.

2012 ◽  
Author(s):  
Ellen D. P. Cousins
2021 ◽  
pp. 5-13
Author(s):  
D. D. Rogov ◽  
◽  
V. M. Vystavnoi ◽  
N. F. Blagoveshchenskaya ◽  
P. E. Baryshev ◽  
...  

The network for monitoring the high-latitude ionosphere by the method of oblique ionospheric sounding deployed in the Russian Arctic region is considered. The study describes the main results of operational data processing for studying the high-latitude ionosphere and determining the conditions for the optimum operation of radio communication systems and over-the-horizon radars in this region. The study demonstrates the potential of the network as a tool for the remote diagnostics of parameters of small-scale artificial ionospheric irregularities induced by powerful HF radio waves in the mid-latitude ionospheric F-region.


Radio Science ◽  
1985 ◽  
Vol 20 (1) ◽  
pp. 63-79 ◽  
Author(s):  
R. A. Greenwald ◽  
K. B. Baker ◽  
R. A. Hutchins ◽  
C. Hanuise

2019 ◽  
Vol 5 (3) ◽  
pp. 116-129
Author(s):  
Владимир Губенко ◽  
Vladimir Gubenko ◽  
Иван Кириллович ◽  
Ivan Kirillovich

We have used radio occultation measurements of the satellite CHAMP (Challenging Minisatellite Payload) to examine sporadic E layers (altitudes 90–130 km) in Earth’s high-latitude ionosphere. We have developed a new method for determining characteristics of internal atmospheric waves based on the use of inclined sporadic E layers of Earth’s ionosphere as a detector. The method relies on the fact that an internal wave propagating through the initially horizontal sporadic E layer causes the plasma density gradient to rotate in the direction of the wave vector, which leads to the fact that the layer ionization plane is set parallel to the phase wave front. The developed method enables us to study the interrelations between small-scale internal waves and sporadic E layers in Earth’s ionosphere and significantly expands the capabilities of traditional radio occultation monitoring of the atmosphere. We have found that the internal atmospheric waves under study have periods from 35 to 46 min and vertical phase speeds from 1.2 to 2.0 m/s, which are in good agreement with the results of independent experiments and simulation data on sporadic E layers at a height of ~100 km in Earth’s polar cap.


2021 ◽  
pp. 22-36
Author(s):  
A. S. Kalishin ◽  
◽  
N. F. Blagoveshchenskaya ◽  
Т. D. Borisova ◽  
D. D. Rogov ◽  
...  

The results of long-term studies of the effects of the high-latitude ionosphere modification by powerful high-frequency (HF) radio waves generated by the EISCAT/Heating facility based on remote diagnostic methods are presented. The brief description of remote diagnostic instruments and methods is given. The excitation conditions and characteristics of small-scale artificial field-aligned irregularities induced by the O- and X-mode HF pumping are considered using the bi-static scatter method. The results of the spectral analysis of HF heater signals under various radiation modes are provided. It is shown that the X-mode HF pumping induces narrowband artificial radio emission of the ionosphere recorded at a distance of more than 1000 km from the heater.


2019 ◽  
Vol 5 (3) ◽  
pp. 98-108
Author(s):  
Владимир Губенко ◽  
Vladimir Gubenko ◽  
Иван Кириллович ◽  
Ivan Kirillovich

We have used radio occultation measurements of the satellite CHAMP (Challenging Minisatellite Payload) to examine sporadic E layers (altitudes 90–130 km) in Earth’s high-latitude ionosphere. We have developed a new method for determining characteristics of internal atmospheric waves based on the use of inclined sporadic E layers of Earth’s ionosphere as a detector. The method relies on the fact that an internal wave propagating through the initially horizontal sporadic E layer causes the plasma density gradient to rotate in the direction of the wave vector, which leads to the fact that the layer ionization plane is set parallel to the phase wave front. The developed method enables us to study the interrelations between small-scale internal waves and sporadic E layers in Earth’s ionosphere and significantly expands the capabilities of traditional radio occultation monitoring of the atmosphere. We have found that the internal atmospheric waves under study have periods from 35 to 46 min and vertical phase speeds from 1.2 to 2.0 m/s, which are in good agreement with the results of independent experiments and simulation data on sporadic E layers at a height of ~100 km in Earth’s polar cap.


Sign in / Sign up

Export Citation Format

Share Document