scholarly journals Preface

2012 ◽  
Vol 84 (3) ◽  
pp. vi ◽  
Author(s):  
Pietro Tundo

The first Special Topic issue devoted to green chemistry was published in Pure and Applied Chemistry in July 2000 [Pure Appl. Chem.72, 1207-1403 (2000)]. Since then, three collections of works have been published, arising from the recently launched IUPAC series of International Conferences on Green Chemistry:- 1st International Conference on Green Chemistry (ICGC-1), Dresden, Germany, 10-15 September 2006: Pure Appl. Chem.79, 1833-2100 (2007)- 2nd International Conference on Green Chemistry (ICGC-2), Moscow, Russia, 14-20 September 2008: Pure Appl. Chem.81, 1961-2129 (2009)- 3rd International Conference on Green Chemistry (ICGC-3), Ottawa, Canada, 15-18 August 2010: Pure Appl. Chem.83, 1343-1406 (2011)This Special Topic issue forms part of the series on green chemistry, and is an outcome of IUPAC Project No. 2008-016-1-300: “Chlorine-free Synthesis for Green Chemistry” previously announced in Chemistry International, May-June, p. 22 (2011).The IUPAC Subcommittee on Green Chemistry was founded in July 2001 and has selected the following definition for green chemistry [1]: “The invention, design and application of chemical products and processes to reduce or to eliminate the use and generation of hazardous substances” [2].Much controversy persists about the appropriate terminology to describe this new field of research. Which term should be selected, “green chemistry” or “sustainable chemistry”? Perhaps consensus can be achieved if different purposes and interests of chemists are reconciled. If we are involved in fundamental research devoted to the discovery of new reaction pathways and reagents, “green” is the best word because it defines these intents, thus the term “green chemistry” would be the best name for this field of research. If we are interested in exploitation of a process or a product that must be profitable, then such chemical manufacture must be sustainable by many criteria (price, competition, profit, environment, etc.), and, accordingly, “sustainable chemistry” is the term that best defines this objective.This Special Topic issue has been designed with the intent to explore the restriction, or preferably prevention, of the use of halogenated compounds, whenever feasible, through the assembly and reporting of already identified information. This intent has been pursued through innovative synthetic pathways using clearly identified production drivers (e.g., energy consumption, environmental impact, economical feasibility, etc.). In past decades, scientific knowledge and feasible technologies were unavailable, but we now have enough expertise to pursue discontinuation of hazardous and toxic reagents. In fact, the replacement of reagents that are toxic, dangerous, and produced by eco-unfriendly processes is still an underdeveloped area of chemistry today.Pietro TundoProject Co-chair1. For a short history of green chemistry, see: P. Tundo, F. Aricò. Chem. Int.29(5), (2007).2. P. Anastas, D. Black, J. Breen, T. Collins, S. Memoli, J. Miyamoto, M. Polyakoff, W. Tumas, P. Tundo. Pure Appl. Chem.72, 1207 (2000).

2007 ◽  
Vol 79 (11) ◽  
pp. vi
Author(s):  
Pietro Tundo

This Special Topic issue on green chemistry pursues the same objectives as the Special Topic issue published in July 2000 and can be considered as its continuation. The articles have been selected (with great difficulty) from the massive and valuable scientific contributions on green chemistry by numerous professors and researchers during the 1st International IUPAC Conference on Green-Sustainable Chemistry held 10-15 September 2006 (for more details on the conference, see Chemistry International, Vol. 29, No. 3, 2007).The wide selection of topics was chosen with the intent to attract industrial researchers and representatives, colleagues from universities, as well as politicians and students who are interested in green and sustainable chemistry.The week-long conference was divided into five topics, each of which included several subtopics. This special issue covers the following topics discussed during the conference:benign syntheses routes (heterogeneous catalysis, new reagents, and catalysis for degradation of pollutants);benign process technology (microwave technology, photochemistry, new regulation devices);use of renewable sources (starch, cellulose, sugar, new detergents, biomass technology); andfuture green energy sources (hydrogen technology, fuel cell technology, biodiesel).All the articles reported in this issue point out a general need for novel green processes which comes from a new paradigm in process and product evaluation that must include environmental and health issues (see Chemistry International, Vol. 29, No. 5, 2007). In order to reach this objective, one priority should be to push for more basic research on chemical reactions related to green chemistry, where our knowledge is far from completion.In recent times, in fact, the difference between sustainable chemistry and green chemistry is becoming more evident. Sustainable chemistry envisages an industrial involvement and promotion with the aim of achieving fewer pollutant processes and more valuable products, maintaining, at the same time, profits. Whereas green chemistry is more innovative because it is not necessarily connected to profits, it involves fundamental aspects and does not aim automatically at an industrial process. There is a great need to create a new type of chemistry focused on a new production system and utilization of chemical derivatives, in order to prepare the younger generation to reach a greener future. Following this scenario, this special issue has been planned with the aim of extending the knowledge on green chemistry, not disregarding, however, the industrial interest.Nowadays, globalization (induced by many factors such as industrial development) pushes the chemistry community to adopt ethical issues. In this respect, green chemistry can achieve, better than sustainable chemistry, the approval of society by teaching students to be confident in science and at the same time by convincing people that it is possible to achieve technological development respecting and taking care of the environment in which we live. In order to realize these objectives, it is important that education and fundamental research are strictly connected, so that democracy and development can also grow and progress side by side. In my personal experience I think that the young generation is very interested and passionate about green chemistry. An example is dott. Fabio Aricò (postdoctorate fellow in my group) who helped me through the organization of the IUPAC conference and the preparation of this special issue with enthusiasm and passion.Pietro TundoConference Chairman


2007 ◽  
Vol 79 (11) ◽  
pp. v
Author(s):  
James R. Bull

IUPAC's initiatives and publications have been closely identified with green chemistry over the past several years. However, a significant milestone was reached in a project on Synthetic Pathways and Processes in Green Chemistry, chaired by Prof. Pietro Tundo (University of Venice), as a first IUPAC undertaking devoted exclusively to the theme of green chemistry. This culminated in publication of a Special Topic issue of Pure and Applied Chemistry [Pure Appl. Chem.72 (7), (2000); <http://www.iupac.org/publications/pac/2000/7207>], which attracted an exceptionally high level of readership interest and has hitherto accumulated a record number of nearly 900 citations. Indeed, one of the papers published in that collection, Ionic Liquids: Green Solvents of the Future, by M. J. Earle and K. R. Seddon (The Queen's University of Belfast) [Pure Appl. Chem.72 (7), 1391 (2000)], boasts no fewer than 349 citations (recorded on 30 April 2007)!Shortly thereafter, Prof. M. Kidwai and his colleagues at the University of Delhi launched an IUPAC-sponsored International Symposium on Green Chemistry in January 2001 [Pure Appl. Chem.73 (1), (2001); <http://www.iupac.org/publications/pac/2001/7301>], and have since organized a sequel in 2006 [Pure Appl. Chem.78 (11), (2006); <http://www.iupac.org/publications/pac/2006/7811>]. The record of that first event focused strongly on insights into green catalysis and methodology, and also has the distinction of heading the citation record for PAC event collections in 2001. Later in 2001, the Conference on Green Chemistry: Toward Environmentally Benign Processes and Products was held in Boulder, Colorado, under the guidance of Drs. D. L. Hjeresen and P. T. Anastas [Pure Appl. Chem.73 (8), (2001); <http://www.iupac.org/publications/pac/2001/7308>]. This was the 14th of the CHEMRAWN series, an acronym for CHEMistry Research Applied to World Needs, that is most aptly served by this important collection of works, dealing with a range of policy, educational, and research and development issues around the title topic.Although the foregoing publication projects are explicitly identified with green chemistry, the theme features repeatedly in numerous papers arising from other IUPAC-sponsored events in recent years, or underpins other disciplinary themes, for example, in the Special Topic collection devoted to Electrochemistry and Interfacial Chemistry for the Environment [Pure Appl. Chem.73 (12), (2001); <http://www.iupac.org/publications/pac/2001/7312>]. This trend is destined to continue, and is perhaps symptomatic of growing social responsibility in current research and development. Furthermore, it demonstrates that IUPAC has an ongoing role to play in fostering activities that fulfil its commitment to shaping and serving the chemical sciences in the interests of societal upliftment and progress.It is thus fitting that the Union should now take the initiative to regularize its role in promoting green chemistry, through a series of biennial conferences. It is equally appropriate to highlight the published record of the 1st International Conference on Green-Sustainable Chemistry as a Special Topic feature of PAC, in recognition of the topicality of this authoritative and representative collection of papers.James R. BullScientific Editor


2021 ◽  
Vol 23 (12) ◽  
pp. 291-299
Author(s):  
Ripudaman M Singh ◽  
◽  
Riya Pramanik ◽  
Subhajit Hazra ◽  
◽  
...  

Sustainability is the ability to nurture or support a process for an extended period without compromising the needs of the future generation. Sustainable chemistry is a term that refers to the creation of chemical products and processes that decreases or remove the use and production of hazardous substances. Even though sustainable and green technologies have evolved in other scientific fields, their use in the pharmaceutical industry is still initial stage. Therefore, we need to work in green chemistry to ensure its growth in the pharmaceutical industry. Thus, the current review aimed to highlight the need for green chemistry or sustainable chemistry and its principles and its application in the pharmaceutical industry to practice environment-friendly production of pharmaceutical products and reduce or stop the production of harmful intermediates and products during the synthesis process.


2005 ◽  
Vol 77 (7) ◽  
pp. iii
Author(s):  
James R. Bull

Special topics have come to represent a familiar albeit irregular feature of Pure and Applied Chemistry (PAC) in recent years, and were originally conceived as a way of promoting occasional and sometimes extraordinary IUPAC projects. The concept has served to publicize new initiatives, and promote the role of chemistry in multidisciplinary activities and collaboration. For example, the proceedings of two successive Workshops on Advanced Materials featured prominently as special topic issues, and the series has now been assimilated into the program of established IUPAC events, whilst projects arising from close collaboration with fellow international bodies have enjoyed similar coverage, with special topic issues on "Natural and Anthropogenic Environmental Estrogens" and "Implications of Endocrine Active Substances for Humans and Wildlife".Publication policy has also been evolving to ensure that the Journal continues to occupy a unique and indispensable niche in the primary chemistry literature, and recent changes have been influenced by the distinctive features of special topic projects. Most notably, a prerequisite for publication coverage of IUPAC-sponsored events is prior editorial agreement on the desirability and scope of Journal coverage, as is acceptance of centrally coordinated peer review of all manuscripts. The policy recognizes that the core business of the Journal is to promote representative coverage of the established series of IUPAC-sponsored international conferences, for the good reason that they serve the topical mainstream of the subject with distinction.It is therefore logical to seek out and promote certain events in these established series as "special topics", and thus offer readers more in-depth coverage of the scientific proceedings. The recent history of special topics drawn from established series has vindicated this approach, and early citation statistics reveal an encouraging trend toward high recognition of such coverage. Conversely, above-average citation statistics provide valuable clues to established events that merit coverage as special topics. Organic synthesis is one such topic ó the series has a 30-year history of immensely popular and well-supported international conferences that have witnessed some of the epochal disclosures of the discipline. Although earlier proceedings were sometimes published as monographs, PAC now enjoys the privilege of featuring proceedings from this series regularly, thanks to the enthusiastic support of conference organizers and presenters alike. It is a pleasure to introduce this issue, devoted to a fine selection of works arising from the scientific proceedings of the 15th International Conference on Organic Synthesis, held in Nagoya, Japan on 1ñ6 August 2004. The papers capture the vitality and ongoing promise of organic synthesis, and offer readers an opportunity to participate vicariously in another milestone in its advancement.Special topic issues will feature more regularly in the future, as a deliberate initiative to showcase some of the most prominent and enduring disciplinary themes on offer in the calendar of established IUPAC-sponsored conferences.James R. BullScientific Editor*An issue of reviews and research papers based on lectures presented at the 15th International Conference on Organic Synthesis (ICOS-15), held in Nagoya, Japan, 1-6 August 2004, on the theme of organic synthesis. Other presentations are published in this issue, pp. 1087-1296.


2000 ◽  
Vol 72 (7) ◽  
pp. iii
Author(s):  
Torbjörn Norin

Modern chemistry is one of the essential tools in pursuing better medical care, more efficient telecommunications and informatics, and increased agricultural production. However, certain chemicals produced and used in large quantities might cause various hazards in environmental sectors, owing to their global (trans-boundary) translocation, as well as their intrinsically hazardous properties. To reduce environmental risk of such chemicals, international regulatory measures have already been taken [e.g., in response to the initiatives of the Intergovernmental Forum in Chemical Safety (IFCS)], including legally binding implementations and national capacity building in developing countries. Herein lies the urgent need for promoting worldwide research into green chemistry (sustainable chemistry), in which the invention and application of chemical products and processes are designed to reduce or to eliminate the use and generation of hazardous substances.Indeed, green chemistry should encompass a variety of disciplines of fundamental chemistry in IUPAC, to encourage new trends of chemical research. Moreover, results of these researches could be effectively applied for solving environmental problems related to the production and use of chemicals and to create a new chemical industry in the future. As such, green chemistry research conforms completely to the mission-oriented activity of IUPAC to meet regulatory requirements for achieving environmentally sound management of chemicals. We sincerely hope that the present special issue highlighting the state of the art and future prospects of green chemistry research will encourage all chemists who intend to serve society through their research efforts.J. MiyamotoPast-President of IUPAC Chemistry and the Environment DivisionThe increasing knowledge in natural sciences and the application of this knowledge are the driving forces for the development and welfare of mankind. Chemistry plays a central role in this development. Chemistry provides the molecular understanding of physical properties of materials and other matters and thus closely interacts with physics. Chemistry also provides the molecular understanding of living systems and is the basis for modern biology and medicine. The development and opportunities of synthetic chemistry have opened a new dimension for tailor-made materials and compounds for specific purposes.The driving forces for developments in chemistry have been very strong, and there is a demand for new and efficient processes and chemicals. Aspects of sustainable and environmentally friendly processes and chemicals have sometimes been lagging behind this demand. Fortunately, chemistry also provides the tools for a green and sustainable development. Knowledge in this general area has to be integrated into the planning of all research and development in chemistry. There are specific research topics related to the development of green and sustainable processes, which need the input of new technology and novel chemistry. The present Symposium-in-Print provides an overview of recent research and development in the field. We hope that it will stimulate further activities in the field. It is planned as a first step in an IUPAC action on this subject. The IUPAC Organic and Biomolecular Chemistry Division is grateful to its Subcommittee on Organic Synthesis and particularly Professor Pietro Tundo for initiating and engaging in this action, and to him and Profs. David StC. Black and Sofia Memoli for editing the Symposium-in-Print.Torbjörn NorinPresident of IUPAC Organic and Biomolecular Chemistry Division


2020 ◽  
Vol 5 (10) ◽  
Author(s):  
Saraswathi Narayan

AbstractGreen Chemistry is also known as sustainable chemistry or benign chemistry. It is concerned with developing processes and products that reduce or eliminate the use of and generation of hazardous substances. In the 21st century today’s students are particularly interested in matters that affect their health and well-being of the planet. To deal with such challenges of students the concept of Green and Sustainable Chemistry not only offers an excellent opportunity to address some of these concerns, but also provides us with a useful way to advance the way we do chemistry. Green chemistry is an ideal focus for undergraduate science education. A strong laboratory component is at the heart of many science courses. In this chapter some of the green chemistry principles and methodologies used to device certain undergraduate laboratory experiments and research are discussed.


2017 ◽  
Author(s):  
◽  
Sudhir Ravula

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Green Chemistry, also called as Sustainable Chemistry, envisions minimum hazard to improve the efficiency and performance of materials while designing new chemical processes. In general, Green Chemistry is defined as " ... the utilization of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture, and application of chemical products."[1] In recent decades, there is widespread recognition of the need to adopt cleaner, sustainable practices to enhance the quality and control of commercial products through a knowledge based approach. The goal for the researchers in sustainable chemistry is to meet the objective without compromising the basic needs of future generations. Nanotechnology, much like Green Chemistry, has revolutionized the fundamentals of all fields, serving as a classic example for emerging products in science and technologies. Despite significant achievements involving nanomaterials, the hazardous chemicals and toxicities associated with them are not fully addressed, which causes a major impact on the environment. These phenomena were especially observed for the use of nanocatalysts. Several greener approaches were utilized to produce nanomaterials or nanoparticles, which avoids toxic reducing agents such as borohydrides or hydrazine. However, chemists need to develop simple and cost-effective approaches for sustainable nanocatalysts to meet global challenges. The overall focus of this doctoral dissertation has been paid to the synthesis, controlled surface modification, and functionalization of distinct types of nanoparticles and nanocomposites through sustainable chemical approaches for environmental and biological applications. As a two-dimensional material, molybdenum disulfide (MoS2) has drawn wide attention due to its fascinating properties and exciting application prospects. However, in order to access these properties, which lie within single- or few-layer nanosheets, the inter-sheet van der Waals interactions within the bulk material must be adequately disrupted to exfoliate MoS2 to atomic thicknesses. Chapter 2 present the sonication-assisted aqueous phase exfoliation of bulk MoS2 into dispersed single- or few-layer nanosheets using popular culinary hydrocolloids. In addition, the sterically stabilized nanosheets were successfully decorated with gold nanoparticles via an in-situ reduction by the hydrocolloids to yield plasmonic nanocomposites exhibiting excellent catalytic activity in 4-nitrophenol (4-NP) reduction. Chapter 3 describes one-pot aqueous photo-assisted route to produce tailored metal nanoparticles decorated aminoclay nanosheets. This method uses no heating or external reducing agent (e.g., NaBH4) nor is photocatalyst required. Finally, these nanohybrids were tested as a dual catalyst for 4-NP reduction or antimicrobial activity. Layered transition metal dichalcogenides (TMDs) have attracted increased attention due to their enhanced hydrogen evolution reaction (HER) performance. Chapter 4 accounts the successful synthesis of few-layered MoS2/rGO, SnS2/rGO, and (MoS2)x(SnO2)1-x/rGO nanohybrids anchored on reduced graphene oxide (rGO) through a facile hydrothermal reaction in the presence of ionic liquids (ILs) as stabilizing, delayering agents. Linear sweep voltammetry measurements reveal that incorporation of Sn into the ternary nanohybrids (as a discrete SnO2 phase) greatly reduces the overpotential by 90--130 mV relative to the MoS2 electrocatalyst. The hierarchical structures and large surface areas possessing exposed, active edge sites make few layered (MoS2)x(SnO2)1-x/rGO nanohybrids promising nonprecious metal electrocatalysts for the HER. Conventional ILs have detectable vapor pressures, however, they are still insignificant near ambient temperatures compared with traditional molecular solvents. In Chapter 5, a simple, straightforward, and reliable isothermal gravimetric measurements were conducted on various ILs, deep eutectic solvents (DES), polymeric ionic liquids, protic ionic liquids, and molecular solvents to estimate their vapor pressures with high accuracy. The vapor pressure of ILs and DESs are in the range of 0.1 - 30 Pa at 100 - 250 [degrees]C and 3 - 161 Pa at 60 - 160 [degrees]C, respectively. Moreover, our study elucidates the trends in vapor pressure and ionic constituent's role. Based on the vapor pressure data, an investigator can readily design specific fluids on the mode of applications. In Chapter 6 reports a template-free strategy to attain a hierarchically mesoporous carbon from the cyclotrimerization of alkyne-functionalized ionic liquids (AFILs) as carbon precursors paired with paramagnetic anions. Thus, the current AFILs are shown to be viable precursors to porous carbon materials with several interesting applications, including the sorption of dyes (cationic methylene blue (MB) and anionic thiazine red R (TRR)) from a contaminated aqueous stream and their subsequent degradation by employing the Fenton reaction. In particular, the mesoporous carbons were successfully applied as a selective adsorbent for separation of binary-dye mixtures (MB + TRR). Importantly, the Fe-AFILs@C can be easily removed from the aqueous solution after sorption process, and can be easily regenerated with a simple ethanol-washing step.


Sign in / Sign up

Export Citation Format

Share Document