Reform in Undergraduate Science, Technology, Engineering, and Mathematics: The Classroom Context

2009 ◽  
Vol 58 (2) ◽  
pp. 85-105 ◽  
Author(s):  
Frances K. Stage ◽  
Jillian Kinzie
2017 ◽  
Vol 16 (1) ◽  
pp. ar16 ◽  
Author(s):  
Brian K. Sato ◽  
Amanda K. Lee ◽  
Usman Alam ◽  
Jennifer V. Dang ◽  
Samantha J. Dacanay ◽  
...  

Despite the ubiquity of prerequisites in undergraduate science, technology, engineering, and mathematics curricula, there has been minimal effort to assess their value in a data-driven manner. Using both quantitative and qualitative data, we examined the impact of prerequisites in the context of a microbiology lecture and lab course pairing. Through interviews and an online survey, students highlighted a number of positive attributes of prerequisites, including their role in knowledge acquisition, along with negative impacts, such as perhaps needlessly increasing time to degree and adding to the cost of education. We also identified a number of reasons why individuals do or do not enroll in prerequisite courses, many of which were not related to student learning. In our particular curriculum, students did not believe the microbiology lecture course impacted success in the lab, which agrees with our analysis of lab course performance using a previously established “familiarity” scale. These conclusions highlight the importance of soliciting and analyzing student feedback, and triangulating these data with quantitative performance metrics to assess the state of science, technology, engineering, and mathematics curricula.


2014 ◽  
Vol 13 (2) ◽  
pp. 212-223 ◽  
Author(s):  
Sara A. Wyse ◽  
Tammy M. Long ◽  
Diane Ebert-May

Graduate teaching assistants (TAs) are increasingly responsible for instruction in undergraduate science, technology, engineering, and mathematics (STEM) courses. Various professional development (PD) programs have been developed and implemented to prepare TAs for this role, but data about effectiveness are lacking and are derived almost exclusively from self-reported surveys. In this study, we describe the design of a reformed PD (RPD) model and apply Kirkpatrick's Evaluation Framework to evaluate multiple outcomes of TA PD before, during, and after implementing RPD. This framework allows evaluation that includes both direct measures and self-reported data. In RPD, TAs created and aligned learning objectives and assessments and incorporated more learner-centered instructional practices in their teaching. However, these data are inconsistent with TAs’ self-reported perceptions about RPD and suggest that single measures are insufficient to evaluate TA PD programs.


2020 ◽  
Vol 117 (37) ◽  
pp. 22665-22667 ◽  
Author(s):  
A. Kelly Lane ◽  
Jacob D. McAlpin ◽  
Brittnee Earl ◽  
Stephanie Feola ◽  
Jennifer E. Lewis ◽  
...  

Programs seeking to transform undergraduate science, technology, engineering, and mathematics courses often strive for participating faculty to share their knowledge of innovative teaching practices with other faculty in their home departments. Here, we provide interview, survey, and social network analyses revealing that faculty who use innovative teaching practices preferentially talk to each other, suggesting that greater steps are needed for information about innovative practices to reach faculty more broadly.


2018 ◽  
Vol 17 (2) ◽  
pp. es3 ◽  
Author(s):  
Linda C. Hodges

As the use of collaborative-learning methods such as group work in science, technology, engineering, and mathematics classes has grown, so has the research into factors impacting effectiveness, the kinds of learning engendered, and demographic differences in student response. Generalizing across the range of this research is complicated by the diversity of group-learning approaches used. In this overview, I discuss theories of how group-work formats support or hinder learning based on the ICAP (interactive, constructive, active, passive) framework of student engagement. I then use this model to analyze current issues in group learning, such as the nature of student discourse during group work, the role of group learning in making our classrooms inclusive, and how classroom spaces factor into group learning. I identify key gaps for further research and propose implications from this research for teaching practice. This analysis helps identify essential, effective, and efficient features of group learning, thus providing faculty with constructive guidelines to support their work and affirm their efforts.


2016 ◽  
Vol 15 (2) ◽  
pp. 55-65 ◽  
Author(s):  
Lonneke Dubbelt ◽  
Sonja Rispens ◽  
Evangelia Demerouti

Abstract. Women have a minority position within science, technology, engineering, and mathematics and, consequently, are likely to face more adversities at work. This diary study takes a look at a facilitating factor for women’s research performance within academia: daily work engagement. We examined the moderating effect of gender on the relationship between two behaviors (i.e., daily networking and time control) and daily work engagement, as well as its effect on the relationship between daily work engagement and performance measures (i.e., number of publications). Results suggest that daily networking and time control cultivate men’s work engagement, but daily work engagement is beneficial for the number of publications of women. The findings highlight the importance of work engagement in facilitating the performance of women in minority positions.


Sign in / Sign up

Export Citation Format

Share Document