Mechanisms of Chromosomal DNA Replication Initiation and Stabilization of Replication Forks in Eukaryotes

2013 ◽  
Vol 43 (10) ◽  
pp. 824-832
Author(s):  
LiHong WU ◽  
DaoChun Kong ◽  
Yang LIU
2003 ◽  
Vol 14 (8) ◽  
pp. 3427-3436 ◽  
Author(s):  
Wenyi Feng ◽  
Luis Rodriguez-Menocal ◽  
Gökhan Tolun ◽  
Gennaro D'Urso

Genetic evidence suggests that DNA polymerase epsilon (Pol ϵ) has a noncatalytic essential role during the early stages of DNA replication initiation. Herein, we report the cloning and characterization of the second largest subunit of Pol ϵ in fission yeast, called Dpb2. We demonstrate that Dpb2 is essential for cell viability and that a temperature-sensitive mutant of dpb2 arrests with a 1C DNA content, suggesting that Dpb2 is required for initiation of DNA replication. Using a chromatin immunoprecipitation assay, we show that Dpb2, binds preferentially to origin DNA at the beginning of S phase. We also show that the C terminus of Pol ϵ associates with origin DNA at the same time as Dpb2. We conclude that Dpb2 is an essential protein required for an early step in DNA replication. We propose that the primary function of Dpb2 is to facilitate assembly of the replicative complex at the start of S phase. These conclusions are based on the novel cell cycle arrest phenotype of the dpb2 mutant, on the previously uncharacterized binding of Dpb2 to replication origins, and on the observation that the essential function of Pol ϵ is not dependent on its DNA synthesis activity.


2003 ◽  
Vol 185 (20) ◽  
pp. 6025-6031 ◽  
Author(s):  
Christine Miller ◽  
Hanne Ingmer ◽  
Line Elnif Thomsen ◽  
Kirsten Skarstad ◽  
Stanley N. Cohen

ABSTRACT The dpiA and dpiB genes of Escherichia coli, which are orthologs of genes that regulate citrate uptake and utilization in Klebsiella pneumoniae, comprise a two-component signal transduction system that can modulate the replication of and destabilize the inheritance of pSC101 and certain other plasmids. Here we show that perturbed replication and inheritance result from binding of the effector protein DpiA to A+T-rich replication origin sequences that resemble those in the K. pneumoniae promoter region targeted by the DpiA ortholog, CitB. Consistent with its ability to bind to A+T-rich origin sequences, overproduction of DpiA induced the SOS response in E. coli, suggesting that chromosomal DNA replication is affected. Bacteria that overexpressed DpiA showed an increased amount of DNA per cell and increased cell size—both also characteristic of the SOS response. Concurrent overexpression of the DNA replication initiation protein, DnaA, or the DNA helicase, DnaB—both of which act at A+T-rich replication origin sequences in the E. coli chromosome and DpiA-targeted plasmids—reversed SOS induction as well as plasmid destabilization by DpiA. Our finding that physical and functional interactions between DpiA and sites of replication initiation modulate DNA replication and plasmid inheritance suggests a mechanism by which environmental stimuli transmitted by these gene products can regulate chromosomal and plasmid dynamics.


2019 ◽  
Vol 16 (3) ◽  
pp. 272-277 ◽  
Author(s):  
Rasmus N. Klitgaard ◽  
Anders Løbner-Olesen

Background:One of many strategies to overcome antibiotic resistance is the discovery of compounds targeting cellular processes, which have not yet been exploited.Materials and Methods:Using various genetic tools, we constructed a novel high throughput, cellbased, fluorescence screen for inhibitors of chromosome replication initiation in bacteria.Results:The screen was validated by expression of an intra-cellular cyclic peptide interfering with the initiator protein DnaA and by over-expression of the negative initiation regulator SeqA. We also demonstrated that neither tetracycline nor ciprofloxacin triggers a false positive result. Finally, 400 extracts isolated mainly from filamentous actinomycetes were subjected to the screen.Conclusion:We concluded that the presented screen is applicable for identifying putative inhibitors of DNA replication initiation in a high throughput setup.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Katarzyna Wegrzyn ◽  
Igor Konieczny

Abstract Objective The ability to form nucleoprotein complexes is a fundamental activity of DNA replication initiation proteins. They bind within or nearby the region of replication origin what results in melting of a double-stranded DNA (dsDNA) and formation of single-stranded DNA (ssDNA) region where the replication machinery can assemble. For prokaryotic initiators it was shown that they interact with the formed ssDNA and that this interaction is required for the replication activity. The ability to interact with ssDNA was also shown for Saccharomyces cerevisiae replication initiation protein complex ORC. For Archaea, which combine features of both prokaryotic and eukaryotic organisms, there was no evidence whether DNA replication initiators can interact with ssDNA. We address this issue in this study. Results Using purified Orc1 protein from Aeropyrum pernix (ApOrc1) we analyzed its ability to interact with ssDNA containing sequence of an AT-rich region of the A. pernix origin Ori1 as well as with homopolymers of thymidine (polyT) and adenosine (polyA). The Bio-layer interferometry, surface plasmon resonance and microscale thermophoresis showed that the ApOrc1 can interact with ssDNA and it binds preferentially to T-rich ssDNA. The hydrolysis of ATP is not required for this interaction.


1985 ◽  
Vol 5 (1) ◽  
pp. 85-92
Author(s):  
L D Spotila ◽  
J A Huberman

We have developed a method which allows determination of the direction in which replication forks move through segments of chromosomal DNA for which cloned probes are available. The method is based on the facts that DNA restriction fragments containing replication forks migrate more slowly through agarose gels than do non-fork-containing fragments and that the extent of retardation of the fork-containing fragments is a function of the extent of replication. The procedure allows the identification of DNA replication origins as sites from which replication forks diverge. In this paper we demonstrate the feasibility of this procedure, with simian virus 40 DNA as a model, and we discuss its applicability to other systems.


1993 ◽  
Vol 13 (10) ◽  
pp. 6600-6613
Author(s):  
R D Little ◽  
T H Platt ◽  
C L Schildkraut

We have used the multicopy human rRNA genes as a model system to study replication initiation and termination in mammalian chromosomes. Enrichment for replicating molecules was achieved by isolating S-phase enriched populations of cells by centrifugal elutriation, purification of DNA associated with the nuclear matrix, and a chromatographic procedure that enriches for molecules containing single-stranded regions, a characteristic of replication forks. Two-dimensional agarose gel electrophoresis techniques were used to demonstrate that replication appears to initiate at multiple sites throughout most of the 31-kb nontranscribed spacer (NTS) of human ribosomal DNA but not within the 13-kb transcription unit or adjacent regulatory elements. Although initiation events were detected throughout the majority of the NTS, some regions may initiate more frequently than others. Termination of replication, the convergence of opposing replication forks, was found throughout the ribosomal DNA repeat units, and, in some repeats, specifically at the junction of the 3' end of the transcription unit and the NTS. This site-specific termination of replication is the result of pausing of replication forks near the sites of transcription termination. The naturally occurring multicopy rRNA gene family offers a unique system to study mammalian DNA replication without the use of chemical synchronization agents.


Sign in / Sign up

Export Citation Format

Share Document