scholarly journals The <italic>in-situ</italic> measurement of the penetration trajectory in reinforced concrete target by grid measurement method

2016 ◽  
Vol 46 (4) ◽  
pp. 407-414
Author(s):  
HaiYing HUANG ◽  
Rong ZHANG ◽  
HuiMin LI ◽  
XiaoWei CHEN ◽  
WeiFang XU ◽  
...  
2021 ◽  
Vol 6 (7) ◽  
pp. 99
Author(s):  
Christian Overgaard Christensen ◽  
Jacob Wittrup Schmidt ◽  
Philip Skov Halding ◽  
Medha Kapoor ◽  
Per Goltermann

In proof-loading of concrete slab bridges, advanced monitoring methods are required for identification of stop criteria. In this study, Two-Dimensional Digital Image Correlation (2D DIC) is investigated as one of the governing measurement methods for crack detection and evaluation. The investigations are deemed to provide valuable information about DIC capabilities under different environmental conditions and to evaluate the capabilities in relation to stop criterion verifications. Three Overturned T-beam (OT) Reinforced Concrete (RC) slabs are used for the assessment. Of these, two are in situ strips (0.55 × 3.6 × 9.0 m) cut from a full-scale OT-slab bridge with a span of 9 m and one is a downscaled slab tested under laboratory conditions (0.37 × 1.7 × 8.4 m). The 2D DIC results includes full-field plots, investigation of the time of crack detection and monitoring of crack widths. Grey-level transformation was used for the in situ tests to ensure sufficient readability and results comparable to the laboratory test. Crack initiation for the laboratory test (with speckle pattern) and in situ tests (plain concrete surface) were detected at intervals of approximately 0.1 mm to 0.3 mm and 0.2 mm to 0.3 mm, respectively. Consequently, the paper evaluates a more qualitative approach to DIC test results, where crack indications and crack detection can be used as a stop criterion. It was furthermore identified that crack initiation was reached at high load levels, implying the importance of a target load.


2021 ◽  
pp. 1-1
Author(s):  
Xiaoyang Liang ◽  
Xinxiu Zhou ◽  
Die Hu ◽  
Wenfeng Wu ◽  
Yuchen Jia

2021 ◽  
Vol 263 (2) ◽  
pp. 4532-4537
Author(s):  
Toru Otsuru ◽  
Reiji Tomiku ◽  
Noriko Okamoto ◽  
Siwat Lawanwadeekul

The authors have been published a series of papers on a measurement method for sound absorption characteristics of materials using ensemble averaging technique, i.e., EA method. The papers' results included measurement mechanisms, measurement uncertainty, and so on. Herein, to examine adaptability, especially in in-situ conditions, the EA method is applied to measure absorption characteristics of materials installed in two gymnasiums. A glass-wool panel with the dimension of 0.5 m by 0.5 m by 0.05 m and with the density of 32 kg m^-3 was brought around and measured to check the measurement consistency. Several measurements were conducted during badminton plays were undergoing. Measured sound absorption coefficients revealed that most results agree well with those measured in reverberation rooms. Certain improvement is necessary for the specimen brought to the in-situ measurement to keep the consistency. The inconsistency is considered to originate from unstable conditions between the specimen and floor.


2021 ◽  
Author(s):  
Jean-Bernard Datry ◽  
Audrey Zonco ◽  
Etienne Combescure ◽  
Zakaria Kertaoui ◽  
Clement Le Dem ◽  
...  

<p>With a total height of 55m, the Hyperion residential Tower is located near the Saint Jean train Station in Bordeaux France and was designed by the engineering firm Terrell in association with the architectural practice Jean-Paul Viguier &amp; Associates. The structure is braced with a reinforced concrete core, made of cross laminated timber floors, laminated timber beams along the periphery of the building, wood frame walls on the façades, and prefabricated steel balconies placed in situ with cranes. Detailed design of the composite tower was carried out by engineering firm Setec Tpi, through a large use of BIM software’s (Revit and Tekla) from which shop drawings were generated. The main contractor Eiffage had to face many challenges during construction to erect what is now the tallest wooden tower in France.</p>


2012 ◽  
Vol 226-228 ◽  
pp. 1436-1440
Author(s):  
Li Jun Gao ◽  
Yong Sheng Zhang ◽  
Qin Li

In this paper, dynamic measurement method is applied to test the damage of the bottom reinforced concrete column. The comparison between the calculated first order frequency of the bottom reinforced concrete column and the measured first order frequency shows that the result is consistent. This indicates that this approach is feasible. However, in recent years, dynamic measurement method is widely used in non-destructive testing of bridges and floors. The principle of the dynamic measurement method for the detection of reinforced concrete column utilizes the measured natural frequency, vibration model and damping ratio of reinforced concrete column and such inherent dynamic characteristics of indicators to reflect the damage of reinforced concrete column. And there is no secondary injury for the column. The simplified method of structure dynamics is applied to calculate the frequency of the bottom reinforced concrete column. And the simple calculation method is verified by experiment and practice.


Sign in / Sign up

Export Citation Format

Share Document