scholarly journals Method for rapid inspection of conductive particles based on pseudo-illuminant direction and regional characteristic gradient

2020 ◽  
Vol 51 (2) ◽  
pp. 231-240
Author(s):  
Xin ZHANG ◽  
Chen LUO ◽  
TingXiao FAN ◽  
YiJun ZHOU ◽  
Lei JIA
2022 ◽  
pp. 152808372110569
Author(s):  
Tamara Ruiz-Calleja ◽  
Rocío Calderón-Villajos ◽  
Marilés Bonet-Aracil ◽  
Eva Bou-Belda ◽  
Jaime Gisbert-Payá ◽  
...  

Knife-coating can confer new properties on different textile substrates efficiently by integrating various compounds into the coating paste. Graphene nanoplatelets (GNP) is one of the most used elements for the functionalization of fabrics in recent years, providing electrical and thermal conductivity to fabrics, later used to develop products such as sensors or heated garments. This paper reports thermoelectrically conductive textiles fabrication through knife-coating of cellulosic fabrics with a GNP load from 0.4 to 2 wt% within an acrylic coating paste. The fabric doped with the highest GNP content reaches a temperature increase of 100°C in few seconds. Besides, it is found out that the thermographic images obtained during the electrical voltage application provide maps of irregularities in the dispersion of conductive particles of the coating and defects produced throughout their useful life. Therefore, the application of a low voltage on the coated fabrics allows fast and effective heating by Joule’s effect, whose thermographic images, in turn, can be used as structural maps to check the quality of the GNP doped coating. The temperature values and the heating rate obtained make these fabrics suitable for heating devices, anti-ice and de-ice systems, and protective equipment, which would be of great interest for industrial applications.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3822 ◽  
Author(s):  
Josie Hughes ◽  
Fumiya Iida

Wearable devices which monitor physiological measurements are of significant research interest for a wide number of applications including medicine, entertainment, and wellness monitoring. However, many wearable sensing systems are highly rigid and thus restrict the movement of the wearer, and are not modular or customizable for a specific application. Typically, one sensor is designed to model one physiological indicator which is not a scalable approach. This work aims to address these limitations, by developing soft sensors and including conductive particles into a silicone matrix which allows sheets of soft strain sensors to be developed rapidly using a rapid manufacturing process. By varying the morphology of the sensor sheets and electrode placement the response can be varied. To demonstrate the versatility and range of sensitivity of this base sensing material, two wearable sensors have been developed which show the detection of different physiological parameters. These include a pressure-sensitive insole sensor which can detect ground reaction forces and a strain sensor which can be worn over clothes to allow the measurements of heart rate, breathing rate, and gait.


2014 ◽  
Vol 43 (8) ◽  
pp. 1245-1247 ◽  
Author(s):  
Yuki Koizumi ◽  
Naoki Shida ◽  
Ikuyoshi Tomita ◽  
Shinsuke Inagi

2017 ◽  
Vol 32 (3) ◽  
pp. 250-255 ◽  
Author(s):  
Dalibor Arbutina ◽  
Tomislav Stojic ◽  
Aleksandra Vasic-Milovanovic ◽  
Uros Kovacevic ◽  
Dragan Brajovic

In this paper, the aging effect of commercially available Geiger-Muller counters under working conditions is being considered from both theoretical and experimental point of view. In the experimental part lifetime curves for the commercial Geiger-Muller counter chamber are first recorded. After detection of the aging phenomena, the commercial chamber response to an impulse voltage is tested along with recording of the same response of the Geiger-Muller chamber model with conductive particles included. The law of similarity for the gaseous discharge is fulfilled both by the commercial Geiger-Muller chamber and by the chamber model with conductive particles. The results obtained from the U-test indicate that the aging of the Geiger-Muller chamber is mainly caused by the occurrence of a great number of conductive particles hovering inside the chamber. Some suggestions of how to reduce the aging effect due to conductive particles inside the Geiger-Muller chamber are given in the conclusion.


Sign in / Sign up

Export Citation Format

Share Document