High-sensitivity optical sensor based on cascaded a FP Etalon and a ring resonator

Author(s):  
Hui-Hui Zhu ◽  
Yong-Heng Yue ◽  
Ya-Jie Wang ◽  
Min Zhang ◽  
Jian-Jun He ◽  
...  
2019 ◽  
Vol 125 (11) ◽  
Author(s):  
S. M. Sherif ◽  
M. Y. Elsayed ◽  
L. A. Shahada ◽  
M. A. Swillam

Abstract We propose a highly sensitive optical sensor which is built from silicon nanowires. The silicon nanowires are arranged to form a ring resonator. The silicon nanowires cladding and voids are filled with the analyte. The sensor has a small footprint of 16 μm × 16.5 μm. The insertion loss of the sensor is only 0.4 dB, while it is characterized by its high sensitivity of 430 nm/RIU. As a biosensor, our device showed a 100 nm/RIU sensitivity when a thin biolayer of 10 nm thickness is attached to the silicon nanowire structures.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


Author(s):  
Yoshiteru Amemiya ◽  
Tomoya Taniguchi ◽  
Takeshi Ikeda ◽  
Masataka Fukuyama ◽  
Akio Kuroda ◽  
...  

2015 ◽  
Vol 1105 ◽  
pp. 136-140
Author(s):  
Shinn Fwu Wang ◽  
Fu Hsi Kao ◽  
An Li Liu

In this paper, a new-type electro-optical sensor based on the total-internal reflections theory in heterodyne interferometry is proposed. The sensor is designed as a semi-circle shape. It is made of BK7 glass with the refractive index of 1.51509. And the end surface of the sensor is designed as a micro-mirror. The phase difference between s-and p-polarizations at the output of the optical fiber sensor can be obtained when a heterodyne optical source is launched into the electro-optical sensor at a suitable incident angle. By numerical calculation, the resolution of the system by using the intensity method can reach refractive index unit (RIU) in the measurement range of. The electro-optical sensor could be valuable for chemical, biological and biochemical sensing. It is with some advantages, such as, high resolution and stability, high sensitivity and real-time measurement.


2015 ◽  
Vol 23 (6) ◽  
pp. 7111 ◽  
Author(s):  
Gilberto A. Rodriguez ◽  
Shuren Hu ◽  
Sharon M. Weiss

Sign in / Sign up

Export Citation Format

Share Document