Silicon photodiode device with 100% external quantum efficiency

1983 ◽  
Vol 22 (18) ◽  
pp. 2867 ◽  
Author(s):  
Edward F. Zalewski ◽  
C. Richard Duda
Author(s):  
П.Н. Аруев ◽  
В.П. Белик ◽  
А.А. Блохин ◽  
В.В. Забродский ◽  
А.В. Николаев ◽  
...  

Avalanche silicon photodiode have been developted for near ir, visible, UV and VUV light range. External quantum efficiency have been studied in 114 - 170 abd 210 - 1100nm range. It is demonstrated that photodiode reach from 29 to 9300 electrons/photon on 160 nm with bias voltage of 190 and 303 v respectively.


2020 ◽  
Vol 14 (1) ◽  
pp. 011004
Author(s):  
Shubhra S. Pasayat ◽  
Chirag Gupta ◽  
Matthew S. Wong ◽  
Ryan Ley ◽  
Michael J. Gordon ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuwei Guo ◽  
Sofia Apergi ◽  
Nan Li ◽  
Mengyu Chen ◽  
Chunyang Yin ◽  
...  

AbstractPerovskite light emitting diodes suffer from poor operational stability, exhibiting a rapid decay of external quantum efficiency within minutes to hours after turn-on. To address this issue, we explore surface treatment of perovskite films with phenylalkylammonium iodide molecules of varying alkyl chain lengths. Combining experimental characterization and theoretical modelling, we show that these molecules stabilize the perovskite through suppression of iodide ion migration. The stabilization effect is enhanced with increasing chain length due to the stronger binding of the molecules with the perovskite surface, as well as the increased steric hindrance to reconfiguration for accommodating ion migration. The passivation also reduces the surface defects, resulting in a high radiance and delayed roll-off of external quantum efficiency. Using the optimized passivation molecule, phenylpropylammonium iodide, we achieve devices with an efficiency of 17.5%, a radiance of 1282.8 W sr−1 m−2 and a record T50 half-lifetime of 130 h under 100 mA cm−2.


2019 ◽  
Vol 87 (3) ◽  
pp. 30101 ◽  
Author(s):  
Abdel-baset H. Mekky

Semiconductor materials cadmium sulfide (CdS) and cadmium telluride (CdTe) are employed in the fabrication of thin film solar cells of relatively excessive power conversion efficiency and low producing price. Simulations of thin film CdS/CdTe solar cell were carried out using SCAPS-1D. The influence of temperature field on the variation of CdTe solar cell parameters such as current–voltage, capacitance–voltage characteristics and the external quantum efficiency was investigated theoretically. For use temperatures, one obtains the external quantum efficiency has the same profiles. However, the effect of the temperature on the Mott-Schottky curves is slightly noted by variations on the characteristics. This conclusion can be used by solar cell manufacturers to improve the solar cell parameters with the biggest possible gain in device performance.


Sign in / Sign up

Export Citation Format

Share Document