Systematic approach based on holographic interferometry measurements to characterize the flame structure of partially premixed flames

2001 ◽  
Vol 40 (6) ◽  
pp. 731 ◽  
Author(s):  
Xudong Xiao ◽  
Ishwar K. Puri
Author(s):  
P. Hariharan ◽  
C. Periasamy ◽  
S. R. Gollahalli

In this paper, partially premixed flames of propane-hydrogen blends from elliptic burner geometries in coflow environment have been experimentally studied. Two different elliptic burner geometries with aspect ratios (AR) of 3:1 and 4:1 were used. A circular burner with the same discharge area as that of the elliptic burner was employed for comparison. Measurements were taken at stoichiometric and three other equivalence ratios. Global flame characteristics such as visible height, emission indices, and flame radiation were measured. Flame structure data such as transverse profiles of inflame concentrations of combustion products and local flame temperature were also measured at three axial locations in the flame. Results indicate that elliptic burner flames were shorter, more radiating, and produced lower NO and CO emissions than the corresponding circular burner flames. Results from the inflame measurements of NO and CO were in good agreement with the corresponding global data. Further, the 4:1 AR elliptic burners exhibited a twin-jet flame structure at fuel-rich conditions. The twin-flame structure was evident from the inflame measurements of temperature and combustion species. This study suggests that the combination of elliptic burner geometry and coflow reduces NO and CO emissions from combustion systems, which could potentially lead to cleaner environment.


1999 ◽  
Vol 121 (1) ◽  
pp. 66-72 ◽  
Author(s):  
B. J. Krass ◽  
B. W. Zellmer ◽  
I. K. Puri ◽  
S. Singh

Partial premixing can be induced by design in combustors, occurs inadvertently during turbulent nonpremixed combustion, or arises through inadequate fuel-air mixing. Therefore, it is of interest to investigate the effect of partial premixing in a burner that mimics conditions that might occur under practice. In this investigation, we report on similitude of partially premixed flames encountered in practical complex and multi-dimensional burners with simpler, less complex flames, such as counterflow flamelets. A burner is designed to simulate the more complex multi-dimensional flows that might be encountered in practice, and includes the effects of staging, swirl, and possible quenching by introduction of secondary air. The measurements indicate that the structure of partially premixed flames in complex, practical devices can be analyzed in a manner similar to that of flamelets, even if substantial heat transfer occurs. In particular, the flame structure can be characterized in terms of a modified mixture fraction that differentiates the lean and rich zones, and identifies the spatial location of the flame.


AIAA Journal ◽  
2002 ◽  
Vol 40 (11) ◽  
pp. 2289-2297 ◽  
Author(s):  
Hongshe Xue ◽  
Suresh K. Aggarwal

2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Ping Wang ◽  
Qian Yu ◽  
Prashant Shrotriya ◽  
Mingmin Chen

In the present work, the fluctuations of equivalence ratio in the PRECCINSTA combustor are investigated via large eddy simulations (LES). Four isothermal flow cases with different combinations of global equivalence ratios (0.7 or 0.83) and grids (1.2 or 1.8 million cells) are simulated to study the mixing process of air with methane, which is injected into the inlet channel through small holes. It is shown that the fluctuations of equivalence ratio are very large, and their ranges are [0.4, 1.3] and [0.3, 1.2] for cases 0.83 and 0.7, respectively. For simulating turbulent partially premixed flames in this burner with the well-known dynamically thickened flame (DTF) combustion model, a suitable multistep reaction mechanism should be chosen aforehand. To do that, laminar premixed flames of 15 different equivalence ratios are calculated using three different methane/air reaction mechanisms: 2S_CH4_BFER, 2sCM2 reduced mechanisms and GRI-Mech 3.0 detailed reaction mechanism. The variations of flame temperature, flame speed and thickness of the laminar flames with the equivalence ratios are compared in detail. It is demonstrated that the applicative equivalence ratio range for the 2S_CH4_BFER mechanism is [0.5, 1.3], which is larger than that of the 2sCM2 mechanism [0.5, 1.2]. Therefore, it is recommended to use the 2S_CH4_BFER scheme to simulate the partially premixed flames in the PRECCINSTA combustion chamber.


2003 ◽  
Author(s):  
Yuan Zheng ◽  
Jay P. Gore

A recently developed technique called time and space series analysis was used to calculate the mean and fluctuating spectral radiation intensities leaving diametric and chord-like paths in turbulent partially premixed flames. A standard flame (Flame D) from Sandia Workshop on Turbulent Non-premixed Flames was selected to allow an evaluation of the radiation calculations at least at the single point statistics level. Measurements of spectral radiation intensities using a fast infrared array spectrometer provide an evaluation of the computations and also allow estimation of the length and time scales of scalar fluctuations, which appear as model parameters in the time and space series analysis modeling.


Sign in / Sign up

Export Citation Format

Share Document