scholarly journals Phase unwrapping in ICF target interferometric measurement via deep learning

2020 ◽  
Vol 60 (1) ◽  
pp. 10
Author(s):  
Shengtai Zhu ◽  
Zhongming Zang ◽  
Xianmin Wang ◽  
Yue Wang ◽  
Xulongqi Wang ◽  
...  
Author(s):  
Hongyu Zhou ◽  
Chuanli Cheng ◽  
Hao Peng ◽  
Dong Liang ◽  
Xin Liu ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wei Yin ◽  
Qian Chen ◽  
Shijie Feng ◽  
Tianyang Tao ◽  
Lei Huang ◽  
...  

AbstractThe multi-frequency temporal phase unwrapping (MF-TPU) method, as a classical phase unwrapping algorithm for fringe projection techniques, has the ability to eliminate the phase ambiguities even while measuring spatially isolated scenes or the objects with discontinuous surfaces. For the simplest and most efficient case in MF-TPU, two groups of phase-shifting fringe patterns with different frequencies are used: the high-frequency one is applied for 3D reconstruction of the tested object and the unit-frequency one is used to assist phase unwrapping for the wrapped phase with high frequency. The final measurement precision or sensitivity is determined by the number of fringes used within the high-frequency pattern, under the precondition that its absolute phase can be successfully recovered without any fringe order errors. However, due to the non-negligible noises and other error sources in actual measurement, the frequency of the high-frequency fringes is generally restricted to about 16, resulting in limited measurement accuracy. On the other hand, using additional intermediate sets of fringe patterns can unwrap the phase with higher frequency, but at the expense of a prolonged pattern sequence. With recent developments and advancements of machine learning for computer vision and computational imaging, it can be demonstrated in this work that deep learning techniques can automatically realize TPU through supervised learning, as called deep learning-based temporal phase unwrapping (DL-TPU), which can substantially improve the unwrapping reliability compared with MF-TPU even under different types of error sources, e.g., intensity noise, low fringe modulation, projector nonlinearity, and motion artifacts. Furthermore, as far as we know, our method was demonstrated experimentally that the high-frequency phase with 64 periods can be directly and reliably unwrapped from one unit-frequency phase using DL-TPU. These results highlight that challenging issues in optical metrology can be potentially overcome through machine learning, opening new avenues to design powerful and extremely accurate high-speed 3D imaging systems ubiquitous in nowadays science, industry, and multimedia.


Author(s):  
Lionel Hervé ◽  
Cédric Allier ◽  
Olivier Cioni ◽  
Fabrice Navarro ◽  
Mathide Menneteau ◽  
...  

2021 ◽  
Author(s):  
Ashutosh Tiwari ◽  
Avadh BIhari Narayan ◽  
Onkar Dikshit

<p>Multi-temporal interferometric synthetic aperture radar (MT-InSAR) technique has been effectively used to monitor deformation events over the last two decades. The processing steps generally involve pixel selection, phase unwrapping and displacement estimation. The pixel selection step takes most of the processing time, while a reliable method for phase unwrapping is still not available. This study demonstrates the effect of using deep learning (DL) architectures for MT-InSAR processing. The architectures are applied to reduce time computations and further to improve the quality of pixel selection. Some promising results for pixel selection have been shown earlier with the proposed architecture. In this study, we investigate the performance of the proposed architectures on newer datasets with larger temporal interval. To achieve this objective, the models are retrained with interferometric stacks covering larger temporal period and large time steps (for better estimation of interferometric phase components). Pixel selection results are compared with those obtained using open access algorithms used for MT-InSAR processing.</p>


2021 ◽  
Author(s):  
Zhipeng Wu ◽  
Teng Wang ◽  
Yingjie Wang ◽  
Daqing Ge

<p>InSAR can measure surface deformation in all-weather conditions and has been widely used to study landslides, land subsidence, and many geophysical processes. Since the phase of radar echo is measured in 2π rad modulo (wrapped), phase unwrapping is an indispensable step for InSAR, and its reliability directly determines the feasibility of deformation monitoring. However, temporal and spatial decorrelation often leads to severe noises, localized deformation or strong atmospheric turbulence may result in dense fringes, both making traditional unwrapping methods fail in acquiring continual unwrapped phases. Here, we present a deep convolutional neural network (DENet) to identify the probability of phase discontinuities between every two adjacent pixels in the interferogram and apply the probability as cost in the widely-used minimal cost flow solver to achieve phase unwrapping. To train the network effectively, we design a simulation strategy to generate sufficient training samples: the terrain-related phases are used as the background phases, and the deformation phases, atmospheric turbulence phases, and noises are superimposed to build the training samples. Unlike classical methods such as GAMMA and SNAPHU that use the coherence map as the quality index, we use the probability of phase discontinuities estimated by the DENet as the arc-cost of the minimum cost flow problem. We apply the proposed method to unwrap simulated and real interferograms and compare the results with 8 existing methods (including traditional and deep learning-based ones).  On the simulated data set, the root-mean-square error (RMSE) of the proposed method is lower than all the 8 existing methods. We also test different methods to unwrap the real Sentinel-1 interferograms and verified the reliability using ALOS-2 data with a nearly identical acquisition period. Our results show strong robustness and stability when unwrapping very large interferograms with complicated phase patterns. The proposed method takes advantages of both deep learning and traditional minimal cost flow solver, which can effectively unwrap interferograms with low coherence and/or dense fringes, providing strong potential for large-scale SAR interferometry applications.</p>


2021 ◽  
Author(s):  
Jiaming Qian ◽  
Shejie Feng ◽  
Yixuan Li ◽  
Qian Chen ◽  
Chao Zuo

Sign in / Sign up

Export Citation Format

Share Document