Simple phase retrieval method based on twointensity measurements on a single plane

2021 ◽  
Author(s):  
Junhe Zhou ◽  
Haoqian Pu
Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 82
Author(s):  
Xinxue Ma ◽  
Jianli Wang ◽  
Bin Wang ◽  
Xinyue Liu

In this paper, we demonstrate the use of the modified phase retrieval as a method for application in the measurement of small-slope free-form optical surfaces. This technique is a solution for the measurement of small-slope free-form optical surfaces, based on the modified phase retrieval algorithm, whose essence is that only two defocused images are needed to estimate the wave front with an accuracy similar to that of the traditional phase retrieval but with less image capturing and computation time. An experimental arrangement used to measure the small-slope free-form optical surfaces using the modified phase retrieval is described. The results of these experiments demonstrate that the modified phase retrieval method can achieve measurements comparable to those of the standard interferometer.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Cheng Zhang ◽  
Meiqin Wang ◽  
Qianwen Chen ◽  
Dong Wang ◽  
Sui Wei

Aiming at the problem that the single-intensity phase retrieval method has poor reconstruction quality and low probability of successful recovery, an improved method is proposed in this paper. Our method divides the phase retrieval into two steps: firstly, the GS algorithm is used to recover the amplitude in the spatial domain from the single-spread Fourier spectrum, and then the classical GS algorithm using two intensity measurements (one is recorded and the other is estimated from the first step) measurements is used to recover the phase. Finally, the effectiveness of the proposed method is verified by numerical experiments.


2018 ◽  
Vol 8 (11) ◽  
pp. 2147 ◽  
Author(s):  
Daniel Claus ◽  
Jörg Hennenlotter ◽  
Qi Liting ◽  
Giancarlo Pedrini ◽  
Arnulf Stenzl ◽  
...  

Quantitative phase imaging can reveal morphological features without having to stain the biological sample. This property has important implications for intraoperative applications since the time spent during histopathology can be reduced from a few minutes to a few seconds. However, most common quantitative phase imaging techniques are based on the interferometric principle, which makes them more prone to disturbing environmental influences, such as temperature drift and air turbulence. In the last decade, with the advance of computing power, many different iterative quantitative phase imaging techniques, which only require the recording of the diffracted wavefield, and therefore offer increased robustness towards environmental disturbances, have been proposed. These are particularly well-suited for the application outside the well-controlled lab environment such as an operating theatre. The optical performance of our developed iterative phase retrieval method based on variable wavefront curvature will be evaluated by reference to off-axis digital holography and applied for intraoperative discrimination of tissue.


Sign in / Sign up

Export Citation Format

Share Document