Determination of Thermal Load from Core Temperature Measurements in Single Mode Ytterbium-Doped Fiber Amplifiers

Author(s):  
Franz Beier ◽  
Matthias Heinzig ◽  
Till Walbaum ◽  
Stefan Kuhn ◽  
Christian Hupel ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Liao ◽  
Lan Yang

AbstractTemperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range.


2014 ◽  
Vol 14 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Thomas William Wood ◽  
Bryan Blake ◽  
Thomas E. Blue ◽  
Christian Matthew Petrie ◽  
David Hawn

2018 ◽  
Vol 1 (1) ◽  
pp. 14-17
Author(s):  
Andreas Weller ◽  
Sepehr Sangin ◽  
Günter Buntebarth ◽  
George Melikadze

The project uses results of temperature measurements in shallow boreholes to determine the geothermal gradients for a selected set of wells in Georgia. The hydrothermal flow in the Caucasus region driven by ongoing tectonic activities causes a varying temperature field that impedes determination of stable temperature gradients. Conventional temperature logging provides only a snapshot of the temperature distribution in a well. Therefore, the methodology adopted in this study is based on continuous stationary measurements with up to eight temperature sensors fixed at different depths in the wells. Temperature measurements have been performed in 14 wells using thermometers with resolving power of 0.01 K. The temperature field was recorded during periods ranging from 16 hours to 4 days. This practice of measurements enabled detection of thermal effects of fluid flows within the selected set of boreholes. Considering the 14 wells that were selected for this study, eight showed signs of stability in temperature increase versus depth and the remaining seven wells revealed signs of instability due subsurface fluid flows.


Holzforschung ◽  
2016 ◽  
Vol 70 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Julia K. Denzler ◽  
Andreas Weidenhiller

AbstractThe possibility for pre-grading of logs throughout the year has been evaluated based on dynamic modulus of elasticity (MOEdynor simplifiedEdyn) by means of frequency-based nondestructive testing (NDTfreq). The challenge is thatEdynis variable in the frozen, partly frozen, and unfrozen states of logs (state of matter). In the unfrozen state, NDTfreqis reliable if the moisture content does not fall below fiber saturation. The state of the matter was tested via temperature measurements of air and log by means of an infrared technique and sensors, and information was evaluated from NDTfreq. The temperature measurements proved to be inefficient for industrial application because of unreliable data and long measurement times, whereas the NDTfreqmeasurements allowed the determination of meaningful damping factors. A sufficient level of predictability for more than 60% of the measurements was found. The log measurements in the partly frozen state are inconclusive becauseEdyndata fluctuate in the presence of both liquid and frozen water. For the completely frozen logs, a correction is introduced as a precaution that avoids an overestimation ofEdynin the unfrozen state.


2016 ◽  
Vol 53 (7) ◽  
pp. 070602
Author(s):  
余宇 Yu Yu ◽  
黄值河 Huang Zhihe ◽  
曹涧秋 Cao Jianqiu ◽  
潘志勇 Pan Zhiyong ◽  
郭少锋 Guo Shaofeng ◽  
...  

Open Physics ◽  
2014 ◽  
Vol 12 (3) ◽  
Author(s):  
Samia Ayadi ◽  
Olivier Haeberlé

AbstractWe have applied harmonic expansion to derive an analytical solution for the Lorenz-Haken equations. This method is used to describe the regular and periodic self-pulsing regime of the single mode homogeneously broadened laser. These periodic solutions emerge when the ratio of the population decay rate ℘ is smaller than 0:11. We have also demonstrated the tendency of the Lorenz-Haken dissipative system to behave periodic for a characteristic pumping rate “2C P”[7], close to the second laser threshold “2C 2th ”(threshold of instability). When the pumping parameter “2C” increases, the laser undergoes a period doubling sequence. This cascade of period doubling leads towards chaos. We study this type of solutions and indicate the zone of the control parameters for which the system undergoes irregular pulsing solutions. We had previously applied this analytical procedure to derive the amplitude of the first, third and fifth order harmonics for the laser-field expansion [7, 17]. In this work, we extend this method in the aim of obtaining the higher harmonics. We show that this iterative method is indeed limited to the fifth order, and that above, the obtained analytical solution diverges from the numerical direct resolution of the equations.


Sign in / Sign up

Export Citation Format

Share Document