Optimized scalable circular grating with efficient photon extraction for Nitrogen Vacancy centers in a bulk diamond

CLEO: 2015 ◽  
2015 ◽  
Author(s):  
Jiabao Zheng ◽  
Edward H. Chen ◽  
Luozhou Li ◽  
Florian Dolde ◽  
Dirk Englund
Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 393-401
Author(s):  
Raymond A. Wambold ◽  
Zhaoning Yu ◽  
Yuzhe Xiao ◽  
Benjamin Bachman ◽  
Gabriel Jaffe ◽  
...  

AbstractWe designed a nanoscale light extractor (NLE) for the efficient outcoupling and beaming of broadband light emitted by shallow, negatively charged nitrogen-vacancy (NV) centers in bulk diamond. The NLE consists of a patterned silicon layer on diamond and requires no etching of the diamond surface. Our design process is based on adjoint optimization using broadband time-domain simulations and yields structures that are inherently robust to positioning and fabrication errors. Our NLE functions like a transmission antenna for the NV center, enhancing the optical power extracted from an NV center positioned 10 nm below the diamond surface by a factor of more than 35, and beaming the light into a ±30° cone in the far field. This approach to light extraction can be readily adapted to other solid-state color centers.


2021 ◽  
Author(s):  
Domingo Olivares Postigo ◽  
Federico Gorrini ◽  
Valeria Bitonto ◽  
Johannes Ackermann ◽  
Rakshyakar Giri ◽  
...  

Ensembles of negatively charged nitrogen vacancy centers (NV-) in diamond have been proposed for sensing of magnetic fields and paramagnetic agents, and as a source of spin-order for the hyperpolarization of nuclei in magnetic resonance applications. To this end, strongly fluorescent nanodiamonds represent promising materials, with large surface areas and dense ensembles of NV-. However, surface effects tend to favor the less useful neutral form, the NV0 centers. Here, we study the fluorescence properties and optically detected magnetic resonance (ODMR) of NV- centers as a function of laser power in strongly fluorescent bulk diamond and in nanodiamonds obtained by nanomilling the native material. In bulk diamond, we find that increasing laser power increases ODMR contrast, consistent with a power-dependent increase in spin-polarization. Surprisingly, in nanodiamonds we observe a non-monotonic behavior, with a decrease in ODMR contrast at higher laser power that can be ascribed to more efficient NV-→NV0 photoconversion in nanodiamonds compared to bulk diamond, resulting in depletion of the NV- pool. We also studied this phenomenon in cell cultures following internalization of NDs in macrophages. Our findings show that surface effects in nanodiamonds substantially affect the NV properties and provide indications for the adjustment of experimental parameters.


2021 ◽  
Vol 92 (4) ◽  
pp. 044904
Author(s):  
Shao-Chun Zhang ◽  
Yang Dong ◽  
Bo Du ◽  
Hao-Bin Lin ◽  
Shen Li ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


2011 ◽  
Vol 83 (8) ◽  
Author(s):  
M. V. Hauf ◽  
B. Grotz ◽  
B. Naydenov ◽  
M. Dankerl ◽  
S. Pezzagna ◽  
...  

2016 ◽  
Vol 213 (8) ◽  
pp. 2044-2050 ◽  
Author(s):  
Felipe Fávaro de Oliveira ◽  
Seyed Ali Momenzadeh ◽  
Denis Antonov ◽  
Helmut Fedder ◽  
Andrej Denisenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document