Fluorescence enhancement near metallic nanoparticles under two photon excitation

Author(s):  
S. Lévêque-Fort ◽  
E. Fort ◽  
E. Le Moal ◽  
J.-P. Lacharme ◽  
C. Ricolleau ◽  
...  
2003 ◽  
Author(s):  
Sandrine Leveque-Fort ◽  
Emmanuel Fort ◽  
Eric Le Moal ◽  
Jean Pierre Lacharme ◽  
Christian Ricolleau ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3334
Author(s):  
Maria A. Shokova ◽  
Vladimir E. Bochenkov

Anisotropic noble metal nanoparticles supporting more than one localized surface plasmon resonance can be tailored for efficient dual-mode fluorescence enhancement by ensuring an adequate coupling to both absorption and emission bands of fluorophores. This approach is naturally extended to two-photon excitation fluorescence, where a molecule is excited by simultaneous nonlinear absorption of two photons. However, the relative impact of plasmon coupling to excitation and emission on the overall fluorescence enhancement can be very different in this case. Here, by using the finite-difference time-domain method, we study the two-photon excitation fluorescence of near-infrared fluorescent protein (NirFP) eqFP670, which is the most red-shifted NirFP to date, in proximity to a silver nanobar. By optimizing the length and aspect ratio of the particle, we reach a fluorescence enhancement factor of 103. We show that the single mode coupling regime with highly tuned near-field significantly outperforms the dual-mode coupling enhancement. The plasmon-induced amplification of the fluorophore’s excitation rate becomes of utmost importance due to its quadratic dependence on light intensity, defining the fluorescence enhancement upon two-photon excitation. Our results can be used for the rational design of hybrid nanosystems based on NirFP and plasmonic nanoparticles with greatly improved brightness important for developing whole-body imaging techniques.


The Analyst ◽  
2019 ◽  
Vol 144 (13) ◽  
pp. 4045-4050 ◽  
Author(s):  
Janice B. Rabor ◽  
Koki Kawamura ◽  
Junichi Kurawaki ◽  
Yasuro Niidome

A low-power picosecond diode laser was used for two-photon excitation fluorescence enhancement by plasmonic materials.


Author(s):  
David W. Piston ◽  
Brian D. Bennett ◽  
Robert G. Summers

Two-photon excitation microscopy (TPEM) provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging and photochemistry. Two-photon excitation arises from the simultaneous absorption of two photons in a single quantitized event whose probability is proportional to the square of the instantaneous intensity. For example, two red photons can cause the transition to an excited electronic state normally reached by absorption in the ultraviolet. In practice, two-photon excitation is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10-5 maintains the average input power on the order of 10 mW, only slightly greater than the power normally used in confocal microscopy.


Author(s):  
David W. Piston

Two-photon excitation fluorescence microscopy provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging. Two-photon excitation arises from the simultaneous absorption of two photons in a single quantitized event whose probability is proportional to the square of the instantaneous intensity. For example, two red photons can cause the transition to an excited electronic state normally reached by absorption in the ultraviolet. In our fluorescence experiments, the final excited state is the same singlet state that is populated during a conventional fluorescence experiment. Thus, the fluorophore exhibits the same emission properties (e.g. wavelength shifts, environmental sensitivity) used in typical biological microscopy studies. In practice, two-photon excitation is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10−5 maintains the average input power on the order of 10 mW, only slightly greater than the power normally used in confocal microscopy.


Bioimaging ◽  
1995 ◽  
Vol 3 (2) ◽  
pp. 70-75 ◽  
Author(s):  
Pekka E Hänninen ◽  
Martin Schrader ◽  
Erkki Soini ◽  
Stefan W Hell

1997 ◽  
Vol 3 (S2) ◽  
pp. 305-306
Author(s):  
David W. Piston

Two-photon excitation microscopy (TPEM) provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging and photochemistry. It provides three-dimensional resolution and eliminates background equivalent to an ideal confocal microscope without requiring a confocal spatial filter, whose absence enhances fluorescence collection efficiency. This results in inherent submicron optical sectioning by excitation alone. In practice, TPEM is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10−5 limits the average input power to less than 10 mW, only slightly greater than the power normally used in confocal microscopy. Because of the intensity-squared dependence of the two-photon absorption, the excitation is limited to the focal volume.


Sign in / Sign up

Export Citation Format

Share Document