Hybrid optical fiber architecture combining orbital angular momentum of photons and spatial domain multiplexing with wavelength division multiplexing for higher data rates

Author(s):  
S. Murshid ◽  
S. Alanzi ◽  
R. Enaya ◽  
A. Chakravarty ◽  
G. Parhar ◽  
...  
Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Liu ◽  
Shi Chen ◽  
Hongya Wang ◽  
Shuang Zheng ◽  
Long Zhu ◽  
...  

Lots of research efforts have been devoted to increase the transmission capacity in optical communications using orbital angular momentum (OAM) multiplexing. To enable long-haul OAM mode transmission, an in-line OAM fiber amplifier is desired. A ring-core fiber (RCF) is considered to be a preferable design for stable OAM mode propagation in the fiber. Here, we demonstrate an OAM fiber amplifier based on a fabricated ring-core erbium-doped fiber (RC-EDF). We characterize the performance of the RC-EDF-assisted OAM fiber amplifier and demonstrate its use in OAM multiplexing communications with OAM modes carrying quadrature phase-shift keying (QPSK) and quadrature amplitude modulation (QAM) signals. The amplification of two OAM modes over four wavelengths is demonstrated in a data-carrying OAM-division multiplexing and wavelength-division multiplexing system. The obtained results show favorable performance of the RC-EDF-assisted OAM fiber amplifier. These demonstrations may open up new perspectives for long-haul transmission in capacity scaling fiber-optic communications employing OAM modes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Georg Rademacher ◽  
Benjamin J. Puttnam ◽  
Ruben S. Luís ◽  
Tobias A. Eriksson ◽  
Nicolas K. Fontaine ◽  
...  

AbstractData rates in optical fiber networks have increased exponentially over the past decades and core-networks are expected to operate in the peta-bit-per-second regime by 2030. As current single-mode fiber-based transmission systems are reaching their capacity limits, space-division multiplexing has been investigated as a means to increase the per-fiber capacity. Of all space-division multiplexing fibers proposed to date, multi-mode fibers have the highest spatial channel density, as signals traveling in orthogonal fiber modes share the same fiber-core. By combining a high mode-count multi-mode fiber with wideband wavelength-division multiplexing, we report a peta-bit-per-second class transmission demonstration in multi-mode fibers. This was enabled by combining three key technologies: a wideband optical comb-based transmitter to generate highly spectral efficient 64-quadrature-amplitude modulated signals between 1528 nm and 1610 nm wavelength, a broadband mode-multiplexer, based on multi-plane light conversion, and a 15-mode multi-mode fiber with optimized transmission characteristics for wideband operation.


Sign in / Sign up

Export Citation Format

Share Document