Dimensionality Reduction Based Method for Design and Optimization of Optical Nanostructures Using Neural Network

Author(s):  
Mohammadreza Zandehshahvar ◽  
Omid Hemmatyar ◽  
Yashar Kiarashinejad ◽  
Sajjad Abdollahramezani ◽  
Ali Adibi
2011 ◽  
Vol 8 (3) ◽  
pp. 102-109
Author(s):  
K.B. Puneeth ◽  
K.N. Seetharamu

A predictive model of thermal actuator behavior has been developed and validated that can be used as a design tool to customize the performance of an actuator to a specific application. Modeling thermal actuator behavior requires the use of two sequentially or directly coupled models, the first to predict the temperature increase of the actuator due to the applied voltage and the second to model the mechanical response of the structure due to the increase in temperature. These models have been developed using ANSYS for both thermal response and structural response. Consolidation of FEA (finite element analysis) results has been carried out using an ANN (artificial neural network) in MATLAB. It is seen that an ANN can be successfully employed to interpolate and predict FEA results, thus avoiding necessity of running FEA code for every new case. Furtheroptimization of geometry for maximum actuation length has been carried out using a GA (genetic algorithm) in MATLAB. The results of the GA were verified against the ANN and FEA results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jincai Chang ◽  
Qiuling Pan ◽  
Zhihao Shen ◽  
Hao Qin

In a refrigeration unit, the amount of refrigerant has a substantial influence on the entire refrigeration system. To predict the amount of refrigerant in refrigerators with the best performance, this study used refrigerator data collected in real time via the Internet of Things, which were screened to include only the effective parameters related to the compressor and refrigeration properties (based on their practical significance and the research background) and cleaned by applying longitudinal dimensionality reduction and transverse dimensionality reduction. Then, on the basis of an idealized model for refrigerator data, a model of the relationships between refrigerant amount (the dependent variable) and temperature variation, refrigerator compartment temperature, freezer temperature, and other relevant parameters (independent variables) was established. A refrigeration model based on a neural network was then established for predicting the amount of refrigerant and was used to predict five unknown amounts of refrigerant from data sets. BP neural network and RBF neural network models were used to compare the prediction results and analyze the loss functions. From the results, it was concluded that the unknown amount of refrigerant was most likely to be 32.5 g. It is of great practical significance for refrigerator production and maintenance to study the prediction of the amount of refrigerant remaining in a refrigerator.


Sign in / Sign up

Export Citation Format

Share Document