scholarly journals Resonant field enhancement in lossy periodic structures supporting complex bound states in the continuum

Author(s):  
Ling Tan ◽  
Lijun Yuan ◽  
Ya Yan Lu
2021 ◽  
Vol 2015 (1) ◽  
pp. 012083
Author(s):  
S I Lepeshov ◽  
A A Bogdanov

Abstract Here, the enhancement of electromagnetic field confinement in an all-dielectric metasurface is demonstrated. The enhanced confinement is achieved when the polarization singularity, corresponding to accidental bound states in the continuum, moves to the domain of evanescent fields (under the light line). Such a hybridization of the bound states and evanescent waves results in the 70-fold increase of the electric field enhancement on the top of the metasurface and boosting of the electric field localization.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ekaterina E. Maslova ◽  
Mikhail V. Rybin ◽  
Andrey A. Bogdanov ◽  
Zarina F. Sadrieva

Abstract We study the effect of structural disorder on the transition from the bound states in the continuum (BICs) to quasi-BICs by the example of the periodic photonic structure composed of two layers of parallel dielectric rods. We uncover the specificity in the robustness of the symmetry-protected and accidental BICs against various types of structural disorder. We analyze how the spatial mode localization induced by the structural disorder results in an effective reduction of the system length and limits the Q factor of quasi-BICs. Our results are essential for the practical implementation of BICs especially in natural and self-assembled photonic structures, where the structural disorder plays a crucial role.


Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 725-745 ◽  
Author(s):  
Kirill Koshelev ◽  
Gael Favraud ◽  
Andrey Bogdanov ◽  
Yuri Kivshar ◽  
Andrea Fratalocchi

AbstractNonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics but have received very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of light-matter interaction at the nanoscale. This review paper provides a general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical anapoles and photonic bound states in the continuum. We discuss a brief history of these states in optics, as well as their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-Q resonances, nonlinear wave mixing, and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenzhe Liu ◽  
Lei Shi ◽  
Jian Zi ◽  
Che Ting Chan

Abstract Based on the insights into the phenomenon of bound states in the continuum, a novel approach utilizing the momentum-space polarization morphologies of periodic structures to generate vortex beams (VBs) has been proposed. Such periodic structures modulate beams in a nonlocal way and require no precise alignment. However, the efficiency of such an approach has not been analyzed in detail, and the efficiency in previous realizations is far from optimized. Here, we analyze the factors affecting the efficiency of nonlocal VB generation. We show that the maximal efficiency cannot exceed 25% if the periodic structure carries only singlet resonances. To go beyond this limit, we propose two approaches to improve efficiency. We theoretically analyze the mechanisms and verify the approaches by full-wave simulations. Both of the approaches serve to improve the generation efficiency by several folds.


Sign in / Sign up

Export Citation Format

Share Document