scholarly journals Nonradiating photonics with resonant dielectric nanostructures

Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 725-745 ◽  
Author(s):  
Kirill Koshelev ◽  
Gael Favraud ◽  
Andrey Bogdanov ◽  
Yuri Kivshar ◽  
Andrea Fratalocchi

AbstractNonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics but have received very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of light-matter interaction at the nanoscale. This review paper provides a general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical anapoles and photonic bound states in the continuum. We discuss a brief history of these states in optics, as well as their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-Q resonances, nonlinear wave mixing, and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.

2021 ◽  
Vol 2015 (1) ◽  
pp. 012017
Author(s):  
D V Bochek ◽  
N S Solodovchenko ◽  
K B Samusev ◽  
M F Limonov

Abstract Trapping and confining electromagnetic waves is important in both basic research and a variety of applications. For these purposes, various physical mechanisms are exploited including bound states in the continuum, which have been actively investigated recently. Bound states in the continuum have been observed in various objects consisting of both one and a number of dielectric structures. In particular, these photonic states were observed in high-contrast dielectric cylinders in the regime of strong eigenmode coupling, which leads to destructive interference in the far-field zone. In this article, we present the results of a study of bound states in a continuum in a dielectric ring, i.e. cylinder with coaxial air hole. The dependence of the quality factor Q on the normalized diameter of the hole is discussed.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012083
Author(s):  
S I Lepeshov ◽  
A A Bogdanov

Abstract Here, the enhancement of electromagnetic field confinement in an all-dielectric metasurface is demonstrated. The enhanced confinement is achieved when the polarization singularity, corresponding to accidental bound states in the continuum, moves to the domain of evanescent fields (under the light line). Such a hybridization of the bound states and evanescent waves results in the 70-fold increase of the electric field enhancement on the top of the metasurface and boosting of the electric field localization.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jae Woong Yoon ◽  
Seok Ho Song ◽  
Robert Magnusson

2019 ◽  
Vol 12 (12) ◽  
pp. 125002 ◽  
Author(s):  
Suxia Xie ◽  
Changzhong Xie ◽  
Song Xie ◽  
Jie Zhan ◽  
Zhijian Li ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
Abdoulaye Ndao ◽  
Liyi Hsu ◽  
Wei Cai ◽  
Jeongho Ha ◽  
Junhee Park ◽  
...  

AbstractOne of the key challenges in biology is to understand how individual cells process information and respond to perturbations. However, most of the existing single-cell analysis methods can only provide a glimpse of cell properties at specific time points and are unable to provide cell secretion and protein analysis at single-cell resolution. To address the limits of existing methods and to accelerate discoveries from single-cell studies, we propose and experimentally demonstrate a new sensor based on bound states in the continuum to quantify exosome secretion from a single cell. Our optical sensors demonstrate high-sensitivity refractive index detection. Because of the strong overlap between the medium supporting the mode and the analytes, such an optical cavity has a figure of merit of 677 and sensitivity of 440 nm/RIU. Such results facilitate technological progress for highly conducive optical sensors for different biomedical applications.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenhao Wang ◽  
Lucas V. Besteiro ◽  
Peng Yu ◽  
Feng Lin ◽  
Alexander O. Govorov ◽  
...  

Abstract Hot electrons generated in metallic nanostructures have shown promising perspectives for photodetection. This has prompted efforts to enhance the absorption of photons by metals. However, most strategies require fine-tuning of the geometric parameters to achieve perfect absorption, accompanied by the demanding fabrications. Here, we theoretically propose a Ag grating/TiO2 cladding hybrid structure for hot electron photodetection (HEPD) by combining quasi-bound states in the continuum (BIC) and plasmonic hot electrons. Enabled by quasi-BIC, perfect absorption can be readily achieved and it is robust against the change of several structural parameters due to the topological nature of BIC. Also, we show that the guided mode can be folded into the light cone by introducing a disturbance to become a guided resonance, which then gives rise to a narrow-band HEPD that is difficult to be achieved in the high loss gold plasmonics. Combining the quasi-BIC and the guided resonance, we also realize a multiband HEPD with near-perfect absorption. Our work suggests new routes to enhance the light-harvesting in plasmonic nanosystems.


Sign in / Sign up

Export Citation Format

Share Document