Quantum Information Processing with NV centers at Room Temperature

Author(s):  
Peter C. Maurer ◽  
Georg Kucsko ◽  
Christian Latta ◽  
Liang Jiang ◽  
Norman Y. Yao ◽  
...  
2018 ◽  
Vol 16 (01) ◽  
pp. 1850009 ◽  
Author(s):  
ZhuoYu Shan ◽  
Yong Zhang

Quantum computing and quantum communication have become the most popular research topic. Nitrogen-vacancy (NV) centers in diamond have been shown the great advantage of implementing quantum information processing. The generation of entanglement between NV centers represents a fundamental prerequisite for all quantum information technologies. In this paper, we propose a scheme to realize the high-fidelity storage and extraction of quantum entanglement information based on the NV centers at room temperature. We store the entangled information of a pair of entangled photons in the Bell state into the nuclear spins of two NV centers, which can make these two NV centers entangled. And then we illuminate how to extract the entangled information from NV centers to prepare on-demand entangled states for optical quantum information processing. The strategy of engineering entanglement demonstrated here maybe pave the way towards a NV center-based quantum network.


2020 ◽  
Vol 22 (20) ◽  
pp. 11249-11265 ◽  
Author(s):  
Ruben Mirzoyan ◽  
Ryan G. Hadt

A ligand field model highlights chemical design principles for the development of room temperature coherent materials for quantum information processing.


2021 ◽  
Vol 7 (12) ◽  
pp. eabe8924
Author(s):  
Ming-Xin Dong ◽  
Ke-Yu Xia ◽  
Wei-Hang Zhang ◽  
Yi-Chen Yu ◽  
Ying-Hao Ye ◽  
...  

Nonreciprocal devices operating at the single-photon level are fundamental elements for quantum technologies. Because magneto-optical nonreciprocal devices are incompatible for magnetic-sensitive or on-chip quantum information processing, all-optical nonreciprocal isolation is highly desired, but its realization at the quantum level is yet to be accomplished at room temperature. Here, we propose and experimentally demonstrate two regimes, using electromagnetically induced transparency (EIT) or a Raman transition, for all-optical isolation with warm atoms. We achieve an isolation of 22.52 ± 0.10 dB and an insertion loss of about 1.95 dB for a genuine single photon, with bandwidth up to hundreds of megahertz. The Raman regime realized in the same experimental setup enables us to achieve high isolation and low insertion loss for coherent optical fields with reversed isolation direction. These realizations of single-photon isolation and coherent light isolation at room temperature are promising for simpler reconfiguration of high-speed classical and quantum information processing.


2009 ◽  
Vol 9 (11&12) ◽  
pp. 901-919
Author(s):  
D.R. Leibrandt ◽  
J. Labaziewicz ◽  
R.J. Clark ◽  
I.L. Chuang ◽  
R.J. Epstein ◽  
...  

A scalable, multiplexed ion trap for quantum information processing is fabricated and tested. The trap design and fabrication process are optimized for scalability to small trap size and large numbers of interconnected traps, and for integration of control electronics and optics. Multiple traps with similar designs are tested with $^{111}$Cd$^+$, $^{25}$Mg$^+$, and $^{88}$Sr$^{+}$ ions at room temperature and with $^{88}$Sr$^+$ at 6 K, with respective ion lifetimes of 90 s, 300 $\pm$ 30 s, 56 $\pm$ 6 s, and 4.5 $\pm$ 1.1 hours. The motional heating rate for $^{25}$Mg$^{+}$ at room temperature and a trap frequency of 1.6 MHz is measured to be 7 $\pm$ 3 quanta per millisecond. For $^{88}$Sr$^{+}$ at 6 K and 540 kHz the heating rate is measured to be 220 $\pm$ 30 quanta per second.


2008 ◽  
Vol 22 (01n02) ◽  
pp. 111-112
Author(s):  
DAVID D. AWSCHALOM

We present two emerging opportunities for manipulating and communicating coherent spin states in semiconductors. First, we show that semiconductor microcavities offer unique means of controlling light-matter interactions in confined geometries, resulting in a wide range of applications in optical communications and inspiring proposals for quantum information processing and computational schemes. Studies of spin dynamics in microcavities — a new and promising research field — have revealed novel effects such as polarization beats, stimulated spin scattering, and giant Faraday rotation. Here, we study the electron spin dynamics in optically-pumped GaAs microdisk lasers with quantum wells and interface-fluctuation quantum dots in the active region. In particular, we examine how the electron spin dynamics are modified by the stimulated emission in the disks, and observe an enhancement of the spin coherence time when the optical excitation is in resonance with a high quality ( Q ~ 5000) lasing mode.1 This resonant enhancement, contrary to expectations from the observed trend in the carrier recombination time, is then manipulated by altering the cavity design and dimensions. In analogy to devices based on excitonic coherence, this ability to engineer coherent interactions between electron spins and photons may provide novel pathways towards spin dependent quantum optoelectronics. In a second example, the nitrogen-vacancy (N-V) center in diamond has garnered interest as a room-temperature solid-state system not only for exploring electronic and nuclear spin phenomena but also as a candidate for spin-based quantum information processing. Spin coherence times of up to 50 microseconds have been reported for ensembles of N-V centers and a two-qubit gate utilizing the electron spin of a N-V center and the nuclear spin of a nearby C-13 atom has been demonstrated. Here, we present experiments using angle-resolved magneto-photoluminescence microscopy to investigate anisotropic spin interactions of single N-V centers in diamond at room temperature.2 Negative peaks in the photoluminescence intensity are observed as a function of both magnetic field magnitude and angle, and can be explained by coherent spin precession and anisotropic relaxation at spin-level anticrossings. Additionally, precise field alignment with the symmetry axis of a single N-V center reveals the resonant magnetic dipolar coupling of a single "bright" electron spin of an N-V center to small numbers of "dark" spins of nitrogen defects in its immediate vicinity, which are otherwise undetected by photoluminescence. Most recently, we are exploring the possibility of utilizing this magnetic dipole coupling between bright and dark spins to couple two spatially separated single N-V center spins by means of intermediate nitrogen spins. Note from Publisher: This article contains the abstract only.


2001 ◽  
Author(s):  
David P. DiVincenzo ◽  
Charles H. Bennett

Sign in / Sign up

Export Citation Format

Share Document