scholarly journals High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source

2008 ◽  
Vol 16 (23) ◽  
pp. 19232 ◽  
Author(s):  
Johannes Orphal ◽  
Albert A. Ruth
The Analyst ◽  
2009 ◽  
Vol 134 (11) ◽  
pp. 2220 ◽  
Author(s):  
W. Denzer ◽  
M. L. Hamilton ◽  
G. Hancock ◽  
M. Islam ◽  
C. E. Langley ◽  
...  

2016 ◽  
Vol 8 (4) ◽  
pp. 110 ◽  
Author(s):  
Lucile Rutkowski ◽  
Alexandra C. Johansson ◽  
Damir Valiev ◽  
Amir Khodabakhsh ◽  
Arkadiusz Tkacz ◽  
...  

We report broadband detection of OH in a premixed CH4/air flat flame at atmospheric pressure using cavity-enhanced absorption spectroscopy based on an Er:fiber femtosecond laserand a Fourier transform spectrometer.By taking ratios of spectra measured at different heights above the burner we separate twenty OH transitions from the largely overlapping water background. Weretrieve from fits to the OH lines the relative variation of the OH concentration and flame temperature with height above the burner and compare them with 1-D simulations of the flamestructure. Full Text: PDF ReferencesG. Meijer, M. G. Boogaarts, R. T. Jongma, D. H. Parker and A. M. Wodtke, "Coherent cavity ring down spectroscopy", Chem. Phys. Lett. 217, 1, 112 (1994). CrossRef S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov and D. Romanini, "Cavity ring-down spectroscopy of OH radicals in low pressure flame", Appl. Phys. B 66, 3, 377 (1998). CrossRef X. Mercier, E. Therssen, J. F. Pauwels and P. Desgroux, "Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames.: A comparison with laser-induced fluorescence and direct laser absorption", Chem. Phys. Lett. 299, 1, 75 (1999). CrossRef J. Scherer, D. Voelkel and D. Rakestraw, "Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS) in low pressure flames", Appl. Phys. B 64, 6, 699 (1997). CrossRef R. Peeters, G. Berden and G. Meijer, "Near-infrared cavity enhanced absorption spectroscopy of hot water and OH in an oven and in flames", Appl. Phys. B 73, 1, 65 (2001). CrossRef T. Aizawa, "Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases", Appl. Opt. 40, 27, 4894 (2001). CrossRef B. Löhden, S. Kuznetsova, K. Sengstock, V. M. Baev, et al., "Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments", Appl. Phys. B 102, 2, 331 (2011). CrossRef A. Matynia, M. Idir, J. Molet, C. Roche, et al., "Absolute OH concentration profiles measurements in high pressure counterflow flames by coupling LIF, PLIF, and absorption techniques", Appl. Phys. B 108, 2, 393 (2012). CrossRef R. S. Watt, T. Laurila, C. F. Kaminski and J. Hult, "Cavity Enhanced Spectroscopy of High-Temperature H2O in the Near-Infrared Using a Supercontinuum Light Source", Appl. Spectrosc. 63, 12, 1389 (2009). CrossRef C. Abd Alrahman, A. Khodabakhsh, F. M. Schmidt, Z. Qu and A. Foltynowicz, "Cavity-enhanced optical frequency comb spectroscopy of high-temperature H2O in a flame", Opt. Express 22, 11, 13889 (2014). CrossRef A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork and J. Ye, "Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide", Appl. Phys. B 110, 2, 163 (2013). CrossRef Z. Qu, R. Ghorbani, D. Valiev and F. M. Schmidt, "Calibration-free scanned wavelength modulation spectroscopy ? application to H2O and temperature sensing in flames", Opt. Express 23, 12, 16492 (2015). CrossRef L. Rutkowski, A. Khodabakhsh, A. C. Johansson, D. M. Valiev, et al., "Measurement of H2O and OH in a Flame by Optical Frequency Comb Spectroscopy", CLEO: Science and Innovations SW4H.8 (2016). CrossRef L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, et al., "The HITRAN2012 molecular spectroscopic database", J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013). CrossRef


2010 ◽  
Vol 101 (3) ◽  
pp. 661-669 ◽  
Author(s):  
I. Ventrillard-Courtillot ◽  
E. Sciamma O’Brien ◽  
S. Kassi ◽  
G. Méjean ◽  
D. Romanini

2020 ◽  
Author(s):  
Jingwei Liu ◽  
Xin Li ◽  
Yiming Yang ◽  
Haichao Wang ◽  
Cailing Kuang ◽  
...  

<p>Formaldehyde (HCHO) is the most abundant atmospheric carbonyl compound and plays an important role in the troposphere. However, HCHO detection via traditional incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) is limited by short optical path lengths and weak light intensity. Thus, a new light-emitting diode (LED)-based IBBCEAS was developed herein to measure HCHO in ambient air. Two LEDs (325 and 340 nm) coupled by a Y-type fiber bundle were used as an IBBCEAS light source, which provided both high light intensity and a wide spectral fitting range. The reflectivity of the two cavity mirrors used herein was 0.99965 (1 – reflectivity = 350 ppm loss) at 350 nm, which corresponded with an effective optical path length of 2.15 km within a 0.84 m cavity. At an integration time of 30 s, the measurement precision (1σ) for HCHO was 380 parts per trillion volume (pptv) and the corresponding uncertainty was 8.3%. The instrument was successfully deployed for the first time in a field campaign and delivered results that correlated well with those of a commercial wet-chemical instrument based on Hantzsch fluorimetry (R<sup>2</sup> = 0.769). The combined light source based on Y-type fiber bundle overcomes the difficulty of measuring ambient HCHO via IBBCEAS in near-ultraviolet range, which may extend IBBCEAS technology to measure other atmospheric trace gases with high precision.</p>


2013 ◽  
Vol 9 (S297) ◽  
pp. 281-285
Author(s):  
A. J. Walsh ◽  
D. Zhao ◽  
W. Ubachs ◽  
H. Linnartz

AbstractA new and sensitive set-up to swiftly test proposed carriers of the diffuse interstellar bands (DIBs), over a relatively broad spectral range, is described. The instrument utilizes broad-band cavity enhanced absorption spectroscopy (BBCEAS) and incorporates an optomechanical shutter to modulate light from a continuous incoherent light source. A pulsed supersonically expanding planar plasma expansion is used to mimic conditions in translucent interstellar clouds. Measurements of plasma durations as low as 400 μs are possible. The sensitivity is estimated to be better than 10 ppm/pass, measured with an effective exposure time of only ca. 1 s. The performance and potential of the instrument is demonstrated on spectra of C5H, C6H and C9H3 recorded through expanding hydrocarbon plasma.


Sign in / Sign up

Export Citation Format

Share Document