scholarly journals Effects of adapting luminance and CCT on appearance of white and degree of chromatic adaptation, part II: extremely high adapting luminance

2021 ◽  
Author(s):  
Zheng Huang ◽  
Minchen Wei
Keyword(s):  



2018 ◽  
Vol 2018 (1) ◽  
pp. 313-317
Author(s):  
Yuechen Zhu ◽  
Qiyan Zhal ◽  
Ming Ronnier Luo


2019 ◽  
Vol 2019 (1) ◽  
pp. 237-242
Author(s):  
Siyuan Chen ◽  
Minchen Wei

Color appearance models have been extensively studied for characterizing and predicting the perceived color appearance of physical color stimuli under different viewing conditions. These stimuli are either surface colors reflecting illumination or self-luminous emitting radiations. With the rapid development of augmented reality (AR) and mixed reality (MR), it is critically important to understand how the color appearance of the objects that are produced by AR and MR are perceived, especially when these objects are overlaid on the real world. In this study, nine lighting conditions, with different correlated color temperature (CCT) levels and light levels, were created in a real-world environment. Under each lighting condition, human observers adjusted the color appearance of a virtual stimulus, which was overlaid on a real-world luminous environment, until it appeared the whitest. It was found that the CCT and light level of the real-world environment significantly affected the color appearance of the white stimulus, especially when the light level was high. Moreover, a lower degree of chromatic adaptation was found for viewing the virtual stimulus that was overlaid on the real world.



2014 ◽  
Vol 58 (3) ◽  
pp. 304031-304039
Author(s):  
Shoji Tominaga ◽  
Takahiko Horiuchi ◽  
Shiori Nakajima ◽  
Mariko Yano
Keyword(s):  


2020 ◽  
Vol 10 (18) ◽  
pp. 6392
Author(s):  
Xieliu Yang ◽  
Chenyu Yin ◽  
Ziyu Zhang ◽  
Yupeng Li ◽  
Wenfeng Liang ◽  
...  

Recovering correct or at least realistic colors of underwater scenes is a challenging issue for image processing due to the unknown imaging conditions including the optical water type, scene location, illumination, and camera settings. With the assumption that the illumination of the scene is uniform, a chromatic adaptation-based color correction technology is proposed in this paper to remove the color cast using a single underwater image without any other information. First, the underwater RGB image is first linearized to make its pixel values proportional to the light intensities arrived at the pixels. Second, the illumination is estimated in a uniform chromatic space based on the white-patch hypothesis. Third, the chromatic adaptation transform is implemented in the device-independent XYZ color space. Qualitative and quantitative evaluations both show that the proposed method outperforms the other test methods in terms of color restoration, especially for the images with severe color cast. The proposed method is simple yet effective and robust, which is helpful in obtaining the in-air images of underwater scenes.



1982 ◽  
Vol 7 (1) ◽  
pp. 46-49 ◽  
Author(s):  
R. W. G. Hunt


1969 ◽  
Vol 54 (5) ◽  
pp. 636-649 ◽  
Author(s):  
John Nolte ◽  
Joel E. Brown

The spectral sensitivities of single Limulus median ocellus photoreceptors have been determined from records of receptor potentials obtained using intracellular microelectrodes. One class of receptors, called UV cells (ultraviolet cells), depolarizes to near-UV light and is maximally sensitive at 360 nm; a Dartnall template fits the spectral sensitivity curve. A second class of receptors, called visible cells, depolarizes to visible light; the spectral sensitivity curve is fit by a Dartnall template with λmax at 530 nm. Dark-adapted UV cells are about 2 log units more sensitive than dark-adapted visible cells. UV cells respond with a small hyperpolarization to visible light and the spectral sensitivity curve for this hyperpolarization peaks at 525–550 nm. Visible cells respond with a small hyperpolarization to UV light, and the spectral sensitivity curve for this response peaks at 350–375 nm. Rarely, a double-peaked (360 and 530 nm) spectral sensitivity curve is obtained; two photopigments are involved, as revealed by chromatic adaptation experiments. Thus there may be a small third class of receptor cells containing two photopigments.



Sign in / Sign up

Export Citation Format

Share Document