scholarly journals Development Overview of a Commercial, Low Cost Linear Fresnel Reflector System Using Waterborne Reflectors

Author(s):  
Greg Mungas ◽  
Nick Kramer ◽  
Guangdong Zhu ◽  
John King
Solar Energy ◽  
2018 ◽  
Vol 167 ◽  
pp. 220-230 ◽  
Author(s):  
Evangelos Bellos ◽  
Emmanouil Mathioulakis ◽  
Elias Papanicolaou ◽  
Vassilis Belessiotis

2015 ◽  
Vol 23 (1) ◽  
pp. 78-82
Author(s):  
王成龙 WANG Cheng-long ◽  
马军 MA Jun ◽  
范多旺 FAN Duo-wang

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2883
Author(s):  
Arsenio Barbón ◽  
Covadonga Bayón-Cueli ◽  
José A. Fernández Rubiera ◽  
Luis Bayón

A theoretical justification and computation of the optimum values of the two longitudinal tilt angles of a small-scale linear Fresnel reflector is provided. The optimum angle of the mobile structure is proved to be half the latitude of the geographic location, while the optimum angle of the secondary reflector system is proved to be equal to that latitude. Brute-force verification is carried out for five EU cities, each in one of the five European climate zones.


2019 ◽  
Vol 27 (12) ◽  
pp. 2542-2548
Author(s):  
马 军 MA Jun ◽  
王成龙 WANG Cheng-long ◽  
夏养君 XIA Yang-jun

Author(s):  
Oscar A. López-Núñez ◽  
J. Arturo Alfaro-Ayala ◽  
J. J. Ramírez-Minguela ◽  
Jesus A. Crespo-Quintanilla

Abstract The Linear Fresnel Reflector (LFR) is a promising solar concentrating technology because of its simple design and its low cost compared with others concentrating solar technologies. There are different geometrical parameters that can affect the performance of the LFR specially in the trapezoidal secondary reflector. In this work, a comparison between four different geometries of the secondary reflector of an LFR by means of Computational Fluid Dynamics (Ansys Fluent®) is carried out. It is taking into account the variation of the tilt angle of 45°, 50°, 60° and 70° in the trapezoidal geometry with a constant aperture and a constant height. The comparison is made in terms of the absorbed radiation flux in the absorber tube and the entropy generation rate in a global and local way considering an LFR with 25 mirrors. The entropy generation rate considers the phenomena of viscous dissipation, heat transfer and radiation by means of a user-defined function. The trapezoidal geometry of 60° presents an absorbed radiation flux value of 4085.9 W/m2 with a total entropy generation rate of 0.043 W/K with a thermal efficiency value of 0.284. The results of this CFD model can be applied to obtain a better performance of LFRs.


2021 ◽  
Vol 323 ◽  
pp. 00011
Author(s):  
Mokhtar Ghodbane ◽  
Marek Majdak ◽  
Boussad Boumeddane

Solar energy is one of the most important sources of renewable energies, which is widely used in many fields, such as electricity production through direct production of superheated steam based on Linear Fresnel Reflector. This study aims to show the optical and thermal behavior of linear Fresnel solar reflectors field directed to the electricity production in El-Oued region at Algeria. Four days of different weather data have been selected to track the change in solar field performance. Numerical optical modeling has shown that the optical performance of the solar field has reached 53.60 %, while the thermal study based on the numerical solution of the energy balance equations of the receiver tube proved that the thermal efficiency was 37.3 % and the average thermal loss coefficient was limited between 5.72 and 5.98 W/m²K. As for the superheated steam temperature, the lowest value was recorded in December with a value of 501 K. The results obtained are very compelling and encouraging to invest in this low-cost technology.


Sign in / Sign up

Export Citation Format

Share Document