Spatial coherence of electrically pumped random terahertz lasers

2021 ◽  
Author(s):  
EVA ARIANNA AURELIA POGNA ◽  
Alessandra Di Gaspare ◽  
Kimberly Reichel ◽  
Chiara Liberatore ◽  
Harvey Beere ◽  
...  
2012 ◽  
Vol 1437 ◽  
Author(s):  
Taiichi Otsuji ◽  
Stephane Boubanga Tombet ◽  
Akira Satou ◽  
Maxim Ryzhii ◽  
Victor Ryzhii

ABSTRACTIn this paper recent advances in terahertz-wave generation in graphene are reviewed. First, fundamental basis of the optoelectronic properties of graphene is introduced. Second, nonequilibrium carrier relaxation and recombination dynamics in optically or electrically pumped graphene is described to introduce a possibility of negative dynamic conductivity in a wide terahertz range. Third, recent theoretical advances toward the creation of current-injection graphene terahertz lasers are described. Fourth, unique terahertz dynamics of the two-dimensional plasmons in graphene are described. Finally, the advantages of graphene materials and devices for terahertz-wave generation are summarized.


2019 ◽  
Vol 115 (7) ◽  
pp. 071101 ◽  
Author(s):  
Kyungduk Kim ◽  
Stefan Bittner ◽  
Yongquan Zeng ◽  
Seng Fatt Liew ◽  
Qijie Wang ◽  
...  

Author(s):  
Wanhua Zheng ◽  
Yufei Jia ◽  
Yufei Wang ◽  
Shao Yu Zhao ◽  
Linhai Xu ◽  
...  

Nature ◽  
2009 ◽  
Vol 457 (7226) ◽  
pp. 174-178 ◽  
Author(s):  
Y. Chassagneux ◽  
R. Colombelli ◽  
W. Maineult ◽  
S. Barbieri ◽  
H. E. Beere ◽  
...  

2015 ◽  
Vol 112 (5) ◽  
pp. 1304-1309 ◽  
Author(s):  
Brandon Redding ◽  
Alexander Cerjan ◽  
Xue Huang ◽  
Minjoo Larry Lee ◽  
A. Douglas Stone ◽  
...  

The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.


Author(s):  
E. Völkl ◽  
L.F. Allard ◽  
B. Frost ◽  
T.A. Nolan

Off-axis electron holography has the well known ability to preserve the complex image wave within the final, recorded image. This final image described by I(x,y) = I(r) contains contributions from the image intensity of the elastically scattered electrons IeI (r) = |A(r) exp (iΦ(r)) |, the contributions from the inelastically scattered electrons IineI (r), and the complex image wave Ψ = A(r) exp(iΦ(r)) as:(1) I(r) = IeI (r) + Iinel (r) + μ A(r) cos(2π Δk r + Φ(r))where the constant μ describes the contrast of the interference fringes which are related to the spatial coherence of the electron beam, and Φk is the resulting vector of the difference of the wavefront vectors of the two overlaping beams. Using a software package like HoloWorks, the complex image wave Ψ can be extracted.


2012 ◽  
Vol 2 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Satinderjit Singh

Median filtering is a commonly used technique in image processing. The main problem of the median filter is its high computational cost (for sorting N pixels, the temporal complexity is O(N·log N), even with the most efficient sorting algorithms). When the median filter must be carried out in real time, the software implementation in general-purpose processorsdoes not usually give good results. This Paper presents an efficient algorithm for median filtering with a 3x3 filter kernel with only about 9 comparisons per pixel using spatial coherence between neighboring filter computations. The basic algorithm calculates two medians in one step and reuses sorted slices of three vertical neighboring pixels. An extension of this algorithm for 2D spatial coherence is also examined, which calculates four medians per step.


2020 ◽  
Vol 13 (4) ◽  
pp. 728-736
Author(s):  
REN Jian-ying ◽  
◽  
◽  
SUN Hua-yan ◽  
ZHAO Yan-zhong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document