Axial gradient excitation accelerates volumetric imaging of two-photon microscopy

2022 ◽  
Author(s):  
Yufeng Gao ◽  
Xianyuan Xia ◽  
Lina Liu ◽  
Chen Ting Ai ◽  
Ting Wu ◽  
...  
2019 ◽  
Author(s):  
Yufeng Gao ◽  
Xianyuan Xia ◽  
Jia Yu ◽  
Tingai Chen ◽  
Zhili Xu ◽  
...  

AbstractTwo-photon microscopy(TPM) that features subcellular resolution, intrinsic optical sectioning ability, and deep penetration in sample is a powerful tool of bioimaging. However, the process of layer-by-layer scanning to form a 3D image inherently limits the volumetric imaging speed and significantly increases the phototoxicity. Here we develop a gradient TPM technique that enables rapid volumetric imaging by only acquiring two 2D images. By sequentially exciting the specimen with two axially elongated two-photon beams with complementary gradient intensities, the axial positions of fluorophores can be decoded from the intensity ratio of the paired images. We achieve an axial localization accuracy of 0.728 ± 0.657 μm, which is sufficient for rapid 3D subcellular imaging. We demonstrate the flexibility of the gradient TPM on a variety of sparsely labelled samples, including bead phantoms, mouse brain tissues, live macrophages and live nematode embryos. The results show that, compared with conventional TPM, the 3D imaging speed increases 6 folds while the photobleaching and photodamage are extremely reduced.


2016 ◽  
Vol 110 (3) ◽  
pp. 162a
Author(s):  
Simonluca Piazza ◽  
Paolo Bianchini ◽  
Colin Sheppard ◽  
Alberto Diaspro ◽  
Martí Duocastella

2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

ACS Omega ◽  
2020 ◽  
Author(s):  
Kazushi Yamaguchi ◽  
Kohei Otomo ◽  
Yuichi Kozawa ◽  
Motosuke Tsutsumi ◽  
Tomoko Inose ◽  
...  

2021 ◽  
Vol 18 (2) ◽  
pp. 220-220
Author(s):  
Weijian Zong ◽  
Runlong Wu ◽  
Shiyuan Chen ◽  
Junjie Wu ◽  
Hanbin Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vincent D. Ching-Roa ◽  
Eben M. Olson ◽  
Sherrif F. Ibrahim ◽  
Richard Torres ◽  
Michael G. Giacomelli

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2009 ◽  
Vol 34 (11) ◽  
pp. 1684 ◽  
Author(s):  
Nicolas Olivier ◽  
Alexandre Mermillod-Blondin ◽  
Craig B. Arnold ◽  
Emmanuel Beaurepaire

Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Feby Wijaya Pratiwi ◽  
Chien-Chung Peng ◽  
Si-Han Wu ◽  
Chiung Wen Kuo ◽  
Chung-Yuan Mou ◽  
...  

Mesoporous silica nanoparticles (MSNs) have emerged as a prominent nanomedicine platform, especially for tumor-related nanocarrier systems. However, there is increasing concern about the ability of nanoparticles (NPs) to penetrate solid tumors, resulting in compromised antitumor efficacy. Because the physicochemical properties of NPs play a significant role in their penetration and accumulation in solid tumors, it is essential to systematically study their relationship in a model system. Here, we report a multihierarchical assessment of the accumulation and penetration of fluorescence-labeled MSNs with nine different physicochemical properties in tumor spheroids using two-photon microscopy. Our results indicated that individual physicochemical parameters separately could not define the MSNs’ ability to accumulate in a deeper tumor region; their features are entangled. We observed that the MSNs’ stability determined their success in reaching the hypoxia region. Moreover, the change in the MSNs’ penetration behavior postprotein crowning was associated with both the original properties of NPs and proteins on their surfaces.


2010 ◽  
Author(s):  
G. Metgé ◽  
C. Fiorini-Debuisschert ◽  
F. Charra ◽  
G. Bordeau ◽  
E. Faurel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document