Multichannel Hadamard Transform Raman Microscopy

1990 ◽  
Vol 44 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Patrick J. Treado ◽  
Michael D. Morris

Spatial multiplexing is combined with multichannel detection in a Hadamard transform Raman microscope which provides 127 × 128 pixel images with 12 cm−1 spectral resolution. Spatial resolution of 0.6 μm per pixel has been achieved. A spatial multiplex advantage of better that 104 is demonstrated. Instrumental design details and spectroscopic images are presented.

2018 ◽  
Vol 91 (1) ◽  
pp. 1049-1055 ◽  
Author(s):  
Carol Korzeniewski ◽  
Jay P. Kitt ◽  
Saheed Bukola ◽  
Stephen E. Creager ◽  
Shelley D. Minteer ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 1009
Author(s):  
Xiaoxiao Feng ◽  
Luxiao He ◽  
Qimin Cheng ◽  
Xiaoyi Long ◽  
Yuxin Yuan

Hyperspectral (HS) images usually have high spectral resolution and low spatial resolution (LSR). However, multispectral (MS) images have high spatial resolution (HSR) and low spectral resolution. HS–MS image fusion technology can combine both advantages, which is beneficial for accurate feature classification. Nevertheless, heterogeneous sensors always have temporal differences between LSR-HS and HSR-MS images in the real cases, which means that the classical fusion methods cannot get effective results. For this problem, we present a fusion method via spectral unmixing and image mask. Considering the difference between the two images, we firstly extracted the endmembers and their corresponding positions from the invariant regions of LSR-HS images. Then we can get the endmembers of HSR-MS images based on the theory that HSR-MS images and LSR-HS images are the spectral and spatial degradation from HSR-HS images, respectively. The fusion image is obtained by two result matrices. Series experimental results on simulated and real datasets substantiated the effectiveness of our method both quantitatively and visually.


Author(s):  
Timothy P. L. Roberts ◽  
James W. Wheless ◽  
Andrew C. Papanicolaou

As is evident from the scientific chapters of this book, the technology of magnetoencephalography offers a combination of spatial, temporal, and spectral resolution, unique among neuroimaging technologies. While functional magnetic resonance imaging (fMRI) accommodates spatial resolution, it lacks the millisecond resolution (because of the reliance on a slow hemodynamic response) to identify subtle latency shifts, or the specificity to distinguish theta- versus alpha- versus gamma-band oscillatory activity. While electroencephalography (EEG) offers the needed temporal resolution, it fails to adequately localize brain sources, owing to the physics of inverse modeling and the dependence of scalp electric potentials on tissue electrical conductivity. Thus, although fMRI may see “activity,” it cannot characterize important attributes of its nature. Conversely, EEG may detect “anomalies” but not be able to attribute them to a particular spatial source....


2016 ◽  
Vol 63 (21) ◽  
pp. 2203-2210
Author(s):  
Rui Zhang ◽  
Kewu Li ◽  
Yuanyuan Chen ◽  
Yaoli Wang ◽  
Zhibin Wang

1987 ◽  
Vol 127 ◽  
pp. 417-418
Author(s):  
J. Bland ◽  
K. Taylor ◽  
P. D. Atherton

The TAURUS Imaging Fabry-Perot System (Taylor & Atherton 1980) has been used with the IPCS at the AAT to observe the ionized gas within NGC 5128 (Cen A) at [NII]λ6548 and Hα. Seven independent (x, y,λ) data cubes were obtained along the dust lane at high spectral resolution (30 km/s FWHM) and at a spatial resolution limited by the seeing (~1″). From these data, maps of the kinematics and intensities of the ionized gas were derived over a 420″ by 300″ region. The maps are the most complete to date for this object comprising 17500 and 5300 fitted spectra in Ha and [NII]λ6548 respectively. The dust lane system is found to be well understood in terms of a differentially rotating disc of gas and dust which is warped both along and perpendicular to the line-of-sight.


2020 ◽  
Vol 74 (8) ◽  
pp. 921-931 ◽  
Author(s):  
Ashley Allen ◽  
Abigail Waldron ◽  
Joshua M. Ottaway ◽  
J. Chance Carter ◽  
S. Michael Angel

A new hyperspectral Raman imaging technique is described using a spatial heterodyne Raman spectrometer (SHRS) and a microlens array (MLA). The new technique enables the simultaneous acquisition of Raman spectra over a wide spectral range at spatially isolated locations within two spatial dimensions ( x, y) using a single exposure on a charge-coupled device (CCD) or other detector types such as a complementary metal-oxide semiconductor (CMOS) detector. In the SHRS system described here, a 4 × 4 mm MLA with 1600, 100 µm diameter lenslets is used to image the sample, with each lenslet illuminating a different region of the SHRS diffraction gratings and forming independent fringe images on the CCD. The fringe images from each lenslet contain the fully encoded Raman spectrum of the region of the sample “seen” by the lenslet. Since the SHRS requires no moving parts, all fringe images can be measured simultaneously with a single detector exposure, and in principle using a single laser shot, in the case of a pulsed laser. In this proof of concept paper, hyperspectral Raman spectra of a wide variety of heterogeneous samples are used to characterize the technique in terms of spatial and spectral resolution tradeoffs. It is shown that the spatial resolution is a function of the diameter of the MLA lenslets, while the number of spatial elements that can be resolved is equal to the number of MLA lenslets that can be imaged onto the SHRS detector. The spectral resolution depends on the spatial resolution desired, and the number of grooves illuminated on both diffraction gratings by each lenslet, or combination of lenslets in cases where they are grouped.


2020 ◽  
Vol 12 (6) ◽  
pp. 993 ◽  
Author(s):  
Chen Yi ◽  
Yong-qiang Zhao ◽  
Jonathan Cheung-Wai Chan ◽  
Seong G. Kong

This paper presents a joint spatial-spectral resolution enhancement technique to improve the resolution of multispectral images in the spatial and spectral domain simultaneously. Reconstructed hyperspectral images (HSIs) from an input multispectral image represent the same scene in higher spatial resolution, with more spectral bands of narrower wavelength width than the input multispectral image. Many existing improvement techniques focus on spatial- or spectral-resolution enhancement, which may cause spectral distortions and spatial inconsistency. The proposed scheme introduces virtual intermediate variables to formulate a spectral observation model and a spatial observation model. The models alternately solve spectral dictionary and abundances to reconstruct desired high-resolution HSIs. An initial spectral dictionary is trained from prior HSIs captured in different landscapes. A spatial dictionary trained from a panchromatic image and its sparse coefficients provide high spatial-resolution information. The sparse coefficients are used as constraints to obtain high spatial-resolution abundances. Experiments performed on simulated datasets from AVIRIS/Landsat 7 and a real Hyperion/ALI dataset demonstrate that the proposed method outperforms the state-of-the-art spatial- and spectral-resolution enhancement methods. The proposed method also worked well for combination of exiting spatial- and spectral-resolution enhancement methods.


2009 ◽  
Vol 15 (S2) ◽  
pp. 562-563 ◽  
Author(s):  
T Tague

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


Sign in / Sign up

Export Citation Format

Share Document