A New Spectroscopic Technique for in situ Chemical Reaction Monitoring Using Mid-Range Infrared Optical Fibers

1992 ◽  
Vol 46 (7) ◽  
pp. 1105-1112 ◽  
Author(s):  
William R. Moser ◽  
Joseph R. Berard ◽  
Peter J. Melling ◽  
Robert J. Burger

A new versatile spectroscopic technique for chemical reaction monitoring using mid-range infrared optical fibers has recently been developed. Chalcogenide glass optical fibers were used to direct infrared radiation from an FT-IR spectrometer through ZnSe Cylindrical Internal Reflectance (CIR) crystals embedded within laboratory scale reactors. The utility of this technique for studying chemical systems was demonstrated by monitoring various stoichiometric reactions at ambient conditions. A laboratory-scale glass reactor fabricated with the capability to mount a CIR crystal was used as the reaction vessel. The ability of this system to monitor high-pressure and/or high-temperature chemical reactions was also demonstrated by studying the cobalt catalyzed hydroformylation of olefins. A stainless steel CIR reactor, slightly modified to allow for connections with optical fibers, was used for experiments ranging from 50 to 90°C and under 750 to 800 psi synthesis gas (H2/CO mixture). In all cases sufficient signal strength at the detector and adequate penetration into the bulk reaction medium was achieved, resulting in infrared spectra of high quality and resolution. Spectral scans of the reaction in progress allowed the accurate determination of the concentration of reactants and products as a function of time.

1991 ◽  
Vol 240 ◽  
Author(s):  
Emil S. Koteies

ABSTRACTWe have developed a novel experimental technique for accurately determining band offsets in semiconductor quantum wells (QW). It is based on the fact that the ground state heavy- hole (HH) band energy is more sensitive to the depth of the valence band well than the light-hole (LH) band energy. Further, it is well known that as a function of the well width, Lz, the energy difference between the LH and HH excitons in a lattice matched, unstrained QW system experiences a maximum. Calculations show that the position, and more importantly, the magnitude of this maximum is a sensitive function of the valence band offset, Qy, which determines the depth of the valence band well. By fitting experimentally measured LH-HH splittings as a function of Lz, an accurate determination of band offsets can be derived. We further reduce the experimental uncertainty by plotting LH-HH as a function of HH energy (which is a function of Lz ) rather than Lz itself, since then all of the relevant parameters can be precisely determined from absorption spectroscopy alone. Using this technique, we have derived the conduction band offsets for several material systems and, where a consensus has developed, have obtained values in good agreement with other determinations.


2019 ◽  
Vol 58 (43) ◽  
pp. 15372-15376 ◽  
Author(s):  
Bing Wu ◽  
Sebastian Ecken ◽  
Ian Swyer ◽  
Chunliang Li ◽  
Amy Jenne ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Chanbasha Basheer

We applied a simple, low-cost design of glass capillary microreactor for the catalytic oxidation of benzene to phenol at ambient conditions. Polyvinylchloride-nanofiber-membrane-supported titania nanoparticle (TiO2-PVC) as catalyst and in situ production of hydroxyl radicals as oxidant. The reaction was monitored by gas chromatography-mass spectrometry (GC-MS). The reaction conditions were optimized and the performance of the microreactor was then compared with the conventional laboratory scale reaction which used hydrogen peroxide as oxidant. The microreactor gave a better yield of 14% for phenol compared to 0.14% in the conventional laboratory scale reaction. Reaction conditions such as reaction time, reaction pH, and applied potential were optimized. With optimized reaction conditions selectivity of >37% and >88% conversion of benzene were obtained.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8193
Author(s):  
Sohel Rana ◽  
Austin Fleming ◽  
Nirmala Kandadai ◽  
Harish Subbaraman

Neutron and gamma irradiation is known to compact silica, resulting in macroscopic changes in refractive index (RI) and geometric structure. The change in RI and linear compaction in a radiation environment is caused by three well-known mechanisms: (i) radiation-induced attenuation (RIA), (ii) radiation-induced compaction (RIC), and (iii) radiation-induced emission (RIE). These macroscopic changes induce errors in monitoring physical parameters such as temperature, pressure, and strain in optical fiber-based sensors, which limit their application in radiation environments. We present a cascaded Fabry–Perot interferometer (FPI) technique to measure macroscopic properties, such as radiation-induced change in RI and length compaction in real time to actively account for sensor drift. The proposed cascaded FPI consists of two cavities: the first cavity is an air cavity, and the second is a silica cavity. The length compaction from the air cavity is used to deduce the RI change within the silica cavity. We utilize fast Fourier transform (FFT) algorithm and two bandpass filters for the signal extraction of each cavity. Inclusion of such a simple cascaded FPI structure will enable accurate determination of physical parameters under the test.


1988 ◽  
Vol 27 (23) ◽  
pp. 4822 ◽  
Author(s):  
J. Dugas ◽  
M. Sotom ◽  
E. Douhe ◽  
L. Martin ◽  
P. Destruel

2019 ◽  
Vol 280 ◽  
pp. 16-23 ◽  
Author(s):  
H.T. Zhao ◽  
Y. Zhang ◽  
P.Y. Liu ◽  
P.H. Yap ◽  
W. Ser ◽  
...  

2008 ◽  
Vol 21 (4) ◽  
pp. 359-366 ◽  
Author(s):  
Luc Véchot ◽  
Jean-Pierre Bigot ◽  
Daniele Testa ◽  
Marc Kazmierczak ◽  
Patricia Vicot

1998 ◽  
Vol 52 (5) ◽  
pp. 763-769 ◽  
Author(s):  
Jon A. Nunes ◽  
William G. Tong

A fiber-optic degenerate four-wave mixing (D4WM) probe for the measurement of small absorptions in liquid-phase samples is described. Laser D4WM is a nonlinear laser spectroscopic technique that has proven to be highly sensitive for the detection of trace analytes in condensed-phase media. A significant improvement in the forward-scattering optical arrangement of D4WM is demonstrated by using optical fibers for both laser light input and output. There is considerable flexibility inherent in the design since the system may be used in three configurations: (1) the simplest case of transmitting the signal radiation by optical fiber to the detection electronics, (2) the case of guiding the excitation beams to the analyte by polarization-maintaining optical fibers, and (3) the combination of both. The optical fiber-based D4WM system is shown to be an effective and sensitive laser analytical spectroscopic method for trace analysis, offering advantages such as detection in very small probe volumes, remote and in situ analysis, and convenient and efficient optical alignment enhancements obtained by the use of optical fibers.


Sign in / Sign up

Export Citation Format

Share Document