Biological Applications of Anti-Stokes Raman Spectroscopy: Quantitative Analysis of Glucose in Plasma and Serum by a Highly Sensitive Multichannel Raman Spectrometer

1996 ◽  
Vol 50 (10) ◽  
pp. 1301-1306 ◽  
Author(s):  
Xiaoming Dou ◽  
Yoshinori Yamaguchi ◽  
Hiroshi Yamamoto ◽  
Harumi Uenoyama ◽  
Yukihiro Ozaki

This study demonstrates the potential of anti-Stokes Raman spectroscopy in investigating biological samples in a nondestructive manner; quantitative analysis of glucose in plasma and serum has been studied as an example. The efficient collection of anti-Stokes Raman scattering by use of chromatic aberration of a lens has allowed us to obtain high-quality anti-Stokes Raman spectra from glucose in plasma and serum, which is a strongly fluorescent biological sample. The concentration of glucose in these materials can be estimated by the anti-Stokes Raman intensity of the band at 1130 cm−1 due to the C–O stretching mode. The correlation coefficient between the concentration and the intensity has been calculated to be 0.993 and 0.991 for glucose in plasma and serum, respectively. The detection limits for these materials have been found to be 45 mg/dL and 50 mg/dL, respectively.

1997 ◽  
Vol 3 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Xiaoming Dou ◽  
Yoshinori Yamaguchi ◽  
Hiroshi Yamamoto ◽  
Shigeru Doi ◽  
Yukihiro Ozaki

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Keisuke Niwase

We report the development of Raman spectroscopy as a powerful tool for quantitative analysis of point defect and defect clusters in irradiated graphite. Highly oriented pyrolytic graphite (HOPG) was irradiated by 25 keV He+ and 20 keV D+ ions. Raman spectroscopy and transmission electron microscopy revealed a transformation of irradiated graphite into amorphous state. Annealing experiment indicated a close relation between Raman intensity ratio and vacancy concentration. The change of Raman spectra under irradiation was empirically analyzed by “disordered-region model,” which assumes the transformation from vacancy-contained region to disordered region. The model well explains the change of Raman spectra and predicts the critical dose of amorphization, but the nature of the disordered region is unclear. Then, we advanced the model into “dislocation accumulation model,” assigning the disordered region to dislocation dipole. Dislocation accumulation model can simulate the irradiation time dependencies of Raman intensity ratio and the c-axis expansion under irradiation, giving a relation between the absolute concentration of vacancy and Raman intensity ratio, suggesting an existence of the barrier on the mutual annihilation of vacancy and interstitial.


1997 ◽  
Vol 14 (2) ◽  
pp. 199-205 ◽  
Author(s):  
X. Dou ◽  
Y. Yamaguchi ◽  
H. Yamamoto ◽  
S. Doi ◽  
Y. Ozaki

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Shuqi Zhao ◽  
Tongtong Yu ◽  
Ziming Wang ◽  
Shilei Wang ◽  
Limei Wei ◽  
...  

Two-dimensional (2D) materials driven by their unique electronic and optoelectronic properties have opened up possibilities for their various applications. The large and high-quality single crystals are essential to fabricate high-performance 2D devices for practical applications. Herein, IV-V 2D GeP single crystals with high-quality and large size of 20 × 15 × 5 mm3 were successfully grown by the Bi flux growth method. The crystalline quality of GeP was confirmed by high-resolution X-ray diffraction (HRXRD), Laue diffraction, electron probe microanalysis (EPMA) and Raman spectroscopy. Additionally, intrinsic anisotropic optical properties were investigated by angle-resolved polarized Raman spectroscopy (ARPRS) and transmission spectra in detail. Furthermore, we fabricated high-performance photodetectors based on GeP, presenting a relatively large photocurrent over 3 mA. More generally, our results will significantly contribute the GeP crystal to the wide optoelectronic applications.


Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 192
Author(s):  
Bakhtiyar Qader ◽  
Issam Hussain ◽  
Mark Baron ◽  
Rebeca Jiménez-Pérez ◽  
Guzmán Gil-Ramírez ◽  
...  

Coumaphos is an organophosphorus compound used as insecticide and frequently used by beekeepers for the management of parasitic mites. The most important metabolite, chlorferron (CFN), has been identified in biological samples and foodstuff. The need to quickly identify the presence of typical metabolites, as an indication of interaction with coumaphos has driven the need to produce a highly sensitive electrochemical method for chlorferron analysis, based on molecularly imprinting polymers (MIP) technology. It showed irreversible behaviour with mixed diffusion/adsorption-controlled reactions at the electrode surface. A monoelectronic mechanism of reaction for oxidation has also been suggested. The linear range observed was from 0.158 to 75 µM. Median precision in terms of %RSD around 3% was also observed. For DPV, the limit of detection (LOD) and the limit of quantitation (LOQ) for the CFN-MIP were 0.158 µM and 0.48 µM, respectively. The obtained median % recovery was around 98%. The results were also validated to reference values obtained using GC-MS. Urine and human synthetic plasma spiked with CFN were used to demonstrate the usability of the method in biological samples, showing the potential for biomonitoring. The developed imprinted sensor showed maximum signal change less than 16.8% when related metabolites or pesticide were added to the mix, suggesting high selectivity of the MIP sensor toward CFN molecules. The results from in vitro metabolism of CMP analysed also demonstrates the potential for detection and quantification of CFN in environmental samples. The newly developed CFN-MIP sensor offers similar LoDs than chromatographic methods with shorter analysis time.


RSC Advances ◽  
2020 ◽  
Vol 10 (71) ◽  
pp. 43489-43496
Author(s):  
Shaghayegh Saadati ◽  
Ubong Eduok ◽  
Amira Abdelrasoul ◽  
Ahmed Shoker

Rapid and highly sensitive quantitative analysis of 3-carboxy-4-methyl-5-propyl-2-furanpropionate and indole-3-acetic acid in uremic serum of patients with chronic kidney disease.


The Analyst ◽  
2021 ◽  
Author(s):  
Araz Norouz Dizaji ◽  
Nihal Simsek Ozek ◽  
Ferhunde Aysin ◽  
Ayfer Calis ◽  
Asli Yilmaz ◽  
...  

This study reports the development of a highly sensitive antibiotic-based discrimination and sensor platform for the detection of gram-positive bacteria through surface-enhanced Raman spectroscopy (SERS). Herein, the combination of gold...


Sign in / Sign up

Export Citation Format

Share Document