Investigation of the Effects of Atmospheric Conditions on the Quantification of Metal Hydrides Using Laser-Induced Breakdown Spectroscopy

1996 ◽  
Vol 50 (6) ◽  
pp. 764-773 ◽  
Author(s):  
Jagdish P. Singh ◽  
Hansheng Zhang ◽  
Fang-Yu Yueh ◽  
Kevin P. Carney

A study was performed to evaluate the performance characteristics of a laser-induced plasma for real-time determination of various gas-phase metal hydrides, specifically Sn and As. The choice of carrier gas composition and the effect of the pressure on the temporal emission behavior of neutral atoms excited by the laser-induced plasma were investigated. Metal hydrides were generated by using a NaBH4-based hydride generation system. The hydrides were equilibrated into an evacuated cell and isolated from the generator prior to measurement. Laser-induced breakdown spectroscopy (LIBS) spectra of Sn and As were recorded in He and N2 atmospheres at 300 and 760 Torr. The temporal behavior of the LIBS signal was most affected by gas composition, gas pressure, and intensity of the laser beam. The Sn neutral atom emission (284.0 nm) in a N2 atmosphere decreased exponentially with time. In contrast, with a He atmosphere and identical experimental conditions, the Sn signal increased logarithmically with time over the first 100 s. Then the signal maintained a steady-state value until approximately 400 s, after which it decreased exponentially. The steady-state time depends on the concentration of metal hydride. The variation of the LIBS signal with time was mirrored for the As neutral atom emission in He and N2 atmospheres. Various experiments have been performed to find the possible reason for the signal variation with time. It was found that chemical reactions in the laser plasma that might deplete the metal from the gas volume were responsible for the decrease in the signal with time.

2012 ◽  
Vol 21 (7) ◽  
pp. 074204 ◽  
Author(s):  
Nakimana Agnes ◽  
Zuo-Qiang Hao ◽  
Jia Liu ◽  
Hai-Yan Tao ◽  
Xun Gao ◽  
...  

2017 ◽  
Vol 32 (2) ◽  
pp. 367-372 ◽  
Author(s):  
Jin Guo ◽  
Junfeng Shao ◽  
Tingfeng Wang ◽  
Changbin Zheng ◽  
Anmin Chen ◽  
...  

The spatial confinement effect in laser-induced plasma with different distances between the target surface and focal point is investigated by optical emission spectroscopy.


2018 ◽  
Vol 33 (11) ◽  
pp. 1917-1924 ◽  
Author(s):  
Violeta Lazic ◽  
Montserrat Filella ◽  
Andrew Turner

In this study, the feasibility of measuring the Sb content in different plastic materials by laser induced plasma spectroscopy (LIBS) is explored.


1995 ◽  
Vol 16 (2) ◽  
pp. 75-82 ◽  
Author(s):  
B. Bescós ◽  
J. Castaño ◽  
A. González Ureña

This paper reports on the simultaneous detection of Mg, Mn, Fe and Pb in Al samples using laser-induced breakdown spectroscopy and optical multichannel analysis of the photoablated microplasma. Using calibrated samples, well characterized linear working curves were determined for these minor components over the 0.01–1% concentration range. In addition optimum experimental conditions were found that allow the analysis to be carded out in a fast and non-invasive manner. The potential application of the method to on-line industrial analysis is also suggested.


2007 ◽  
Vol 61 (9) ◽  
pp. 1021-1024 ◽  
Author(s):  
Xiao Fang ◽  
S. Rafi Ahmad

Various sample presentation configurations for elemental analysis in aqueous media by laser-induced breakdown spectroscopy (LIBS) have been tested and analyzed. Direct and quantitative comparison between the two different sample presentation methods, plasma excitation within water bulk and on the surface in a water jet, has been carried out using the same LIBS system under the same experimental conditions. Temporal characteristics of light emitted from the plasma induced in both the water bulk and the jet surface containing calcium (Ca) were recorded and presented. Spectral data recorded under optimum detection gating conditions showed that the signal-to-noise ratio (S/N) for excitation in the water jet configuration is approximately 10 times higher than that in the bulk excitation, the actual values of enhancement being dependent on the element type. The typical spectra of aqueous samples containing sodium (Na), calcium (Ca), zinc (Zn), cadmium (Cd), and mercury (Hg) were detected and the signal-to-noise ratios were evaluated and compared for the sample presentation configurations under considerations. The results suggest that for better sensitivity of detection, a simple water jet sample presentation configuration could be designed and implemented for cost-effective commercial use of this technique for elemental analysis in a water environment.


Sign in / Sign up

Export Citation Format

Share Document