Time-Resolved Principal Component Imaging Analysis of Chlorophyll Fluorescence Induction for Monitoring Leaf Water Stress

2013 ◽  
Vol 67 (6) ◽  
pp. 594-599 ◽  
Author(s):  
Hikaru Kobori ◽  
Satoru Tsuchikawa
2021 ◽  
Vol 38 ◽  
pp. 00117
Author(s):  
Elena Shishkina ◽  
Tatiyna Gubanova ◽  
Valerii Titov

When assessing the drought tolerance of Feijoa sellowiana cultivars and forms, the total water content in leaf tissues and their waterretaining and regenerative capacity were determined, and the parameters of chlorophyll fluorescence induction were measured at different water content in leaves. Current-year leaves were characterized by a higher sensitivity to drought. According to the complex of water regime parameters and characteristics of the chlorophyll fluorescence induction (CFI), it was found that the cultivar Aromatnaya Fantazia and the form 3/1 are characterized by a relatively high drought tolerance. It has been demonstrated that the common method for assessing plant tolerance by the index of their water-retaining forces, in relation to Feijoa sellowiana genotypes, does not allow determining the critical level of water deficit. It has been found that in the cultivars and forms with low water stress tolerance, with the water loss of 20-25% from the leaf tissues complete hydration, irreversible irregularities in the PS II structures occurred. The most sensitive to the lack of water in the leaves were such parameters as variable fluorescence, rate constants of the photochemical and non-photochemical deactivation of the excitation, as well as the processes of Qa reduction in the reaction centers of PS II.


2019 ◽  
Author(s):  
Arun K. Shanker ◽  
Robert Coe ◽  
Xavier Sirault

AbstractAn experiment was conducted in controlled conditions in three varieties of wheat under water stress, heat and heat +water stress treatments with the objective of studying Chlorophyll a fluorescence, chlorophyll fluorescence induction kinetics and the function of Photosystem II by plant phenotyping as affected by stress. We hypothesised that during stress, specific adaptive strategies are employed by plants, such as structural and functional changes in PS II by which they acquire new homeostasis which may be protective adaptations. Water stress stress treatment was imposed on Water stress and Heat +Water stress treatments at 43 DAS. Heat treatment was imposed on 48 DAS. Maximum quantum yield of primary photochemistry was measured with PAM 2500 and OJIP was measured with FluorPen FP 100 after the onset of stress at four observation times on two days viz., pre-dawn and afternoon during stress. In addition continuous monitoring of photosynthetic efficiency was done with Monitoring PAM. Heat +Water stress stress was more detrimental as compared to Heat or Water stress alone in terms of maximum quantum yield of photochemistry. This could have been due to higher decrease in connectivity between PSII and its antennae resulting in lower photosynthetic efficiency resulting in the impairment and disruption of the electron transport. K step was observed in heat stress and heat +Water stress stress which may be because of damage to Oxygen Evolving Complex indicating that low thermostability of the complex. The stress treatments had a reduction in the plastoquinone pool size as indicated by the reduced area above the OJIP curve. Our study indicated that the instrument PAM 2500 sensed both stresses separately and combined earlier than the other instruments, so in terms of sensitivity PAM 2500 was more effective than FluorPen FP 100 and MultispeQ. Rapid screening of stress was more effectively with FluorPen FP 100 and MultispeQ than by PAM 2500.


2010 ◽  
Vol 12 (4) ◽  
pp. 546-563 ◽  
Author(s):  
Esa Tyystjärvi ◽  
Michael Nørremark ◽  
Heta Mattila ◽  
Mika Keränen ◽  
Marja Hakala-Yatkin ◽  
...  

1985 ◽  
Vol 104 (3) ◽  
pp. 501-504 ◽  
Author(s):  
M. Havaux ◽  
R. Lannoye

SummaryDisks of hard wheat (Triticum durum Desf.) leaves subjected to rapid desiccation over 4 h showed noticeable changes in the shape of the in vivo chlorophyll fluorescence induction curves. In drought-sensitive varieties (such as Claridoc), water stress resulted in a strong inhibition of the slow fluorescence induction transients. In particular, the fluorescence quenching rate was markedly decreased in water-stressed leaf disks. In contrast, leaves of drought-resistant varieties (such as Aouedj) showed only minor changes in chlorophyll fluorescence. The results of this investigation suggest that the slow transient of the in vivo chlorophyll fluorescence induction phenomenon may provide a simple method for selecting drought-tolerant wheats.


Sign in / Sign up

Export Citation Format

Share Document