scholarly journals Correction: A Systematic In Silico Search for Target Similarity Identifies Several Approved Drugs with Potential Activity against the Plasmodium falciparum Apicoplast

Author(s):  
Nadlla Alves Bispo ◽  
Richard Culleton ◽  
Lourival Almeida Silva ◽  
Pedro Cravo
PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59288 ◽  
Author(s):  
Nadlla Alves Bispo ◽  
Richard Culleton ◽  
Lourival Almeida Silva ◽  
Pedro Cravo

2021 ◽  
pp. e00845
Author(s):  
Alfred Olaoluwa Akinlalu ◽  
Annapoorna Chamundi ◽  
Donald Terseer Yakumbur ◽  
Funmilayo I. Deborah Afolayan ◽  
Ijeoma Akunna Duru ◽  
...  

2019 ◽  
pp. 625-648 ◽  
Author(s):  
Carolina L. Belllera ◽  
María L. Sbaraglini ◽  
Lucas N. Alberca ◽  
Juan I. Alice ◽  
Alan Talevi

2021 ◽  
Vol 6 (3) ◽  
pp. 118
Author(s):  
Ferenc Orosz

In 2009, apicortin was identified in silico as a characteristic protein of apicomplexans that also occurs in the placozoa, Trichoplax adhaerens. Since then, it has been found that apicortin also occurs in free-living cousins of apicomplexans (chromerids) and in flagellated fungi. It contains a partial p25-α domain and a doublecortin (DCX) domain, both of which have tubulin/microtubule binding properties. Apicortin has been studied experimentally in two very important apicomplexan pathogens, Toxoplasma gondii and Plasmodium falciparum. It is localized in the apical complex in both parasites. In T. gondii, apicortin plays a key role in shaping the structure of a special tubulin polymer, conoid. In both parasites, its absence or downregulation has been shown to impair pathogen–host interactions. Based on these facts, it has been suggested as a therapeutic target for treatment of malaria and toxoplasmosis.


Author(s):  
Belal O. Al-Najjar ◽  
Fadi G. Saqallah ◽  
Manal A. Abbas ◽  
Serena Z. Al-Hijazeen ◽  
Obada A. Sibai

Author(s):  
Rana Adnan Tahir ◽  
Sumera Mughal ◽  
Amina Nazir ◽  
Asma Noureen ◽  
Ayesha Jawad ◽  
...  

Background: Hepatitis C virus (HCV) is an enveloped and positive-stranded RNA virus that is a major causative agent of chronic liver diseases worldwide. HCV has become the main cause of liver transplantations and there is no effective drug for all hepatitis genotypes. Elucidation of life cycle and nonstructural proteins of HCV involved in viral replication are the attractive targets for the development of antiviral drugs. Methods: In this work, pharmacoinformatics approaches coupled with docking analyses were applied on HCV nonstructural proteins to identify the novel potential hits and HCV drugs. Molecular docking analyses were carried out on HCV approved drugs followed by the ligand-based pharmacophore generation to screen the antiviral libraries for novel potential hits. Results: Virtual screening technique has made known the top-ranked five novel compounds (ZINC00607900, ZINC03635748, ZINC03875543, ZINC04097464, and ZINC12503102) along with the least binding energy (-8.0 kcal/mol, -6.1 kcal/mol, -7.5 kcal/mol, -7.4 kcal/mol, and -7.3 kcal/mol respectively) and stability with non-structural proteins target. Conclusion: These promising hits exhibited better absorption and ADMET properties as compared to the selected drug molecules. These potential compounds extracted from in silico approach may be significant in drug design and development against Hepatitis and other liver diseases.


Sign in / Sign up

Export Citation Format

Share Document