apical complex
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Peter S Back ◽  
William J O'Shaughnessy ◽  
Andy S Moon ◽  
Pravin S Dewangan ◽  
Michael L Reese ◽  
...  

The Toxoplasma inner membrane complex (IMC) is a specialized organelle that is crucial for the parasite to establish an intracellular lifestyle and ultimately cause disease. The IMC is composed of both membrane and cytoskeletal components, further delineated into the apical cap, body, and basal subcompartments. The apical cap cytoskeleton was recently demonstrated to govern the stability of the apical complex, which controls parasite motility, invasion, and egress. While this role was determined by individually assessing the apical cap proteins AC9, AC10, and the MAP kinase ERK7, how the three proteins collaborate to stabilize the apical complex is unknown. In this study, we use a combination of deletion analyses and yeast-2-hybrid experiments to establish that these proteins form an essential complex in the apical cap. We show that AC10 is a foundational component of the AC10:AC9:ERK7 complex and demonstrate that the interactions among them are critical to maintain the apical complex. Importantly, we identify multiple independent regions of pairwise interaction between each of the three proteins, suggesting that the AC9:AC10:ERK7 complex is organized by multivalent interactions. Together, these data support a model in which multiple interacting domains enable the oligomerization of the AC9:AC10:ERK7 complex and its assembly into the cytoskeletal IMC, which serves as a structural scaffold that concentrates ERK7 kinase activity in the apical cap.



2021 ◽  
Author(s):  
William S O'Shaughnessy ◽  
Xiaoyu Hu ◽  
Sarah Ana Henriquez ◽  
Michael L Reese

Accurate cellular replication balances the biogenesis and turnover of complex structures. Apicomplexan parasites such as Plasmodium and Toxoplasma replicate by forming daughter cells within an intact mother cell, creating additional challenges to ensuring fidelity of division. Critical to these parasites' infectivity is an intricate cytoskeleton structure called the apical complex. Before the daughter apical complex can be inserted into the plasma membrane, the maternal material must be turned over. We previously identified the kinase ERK7 as required for the maturation of the apical complex in Toxoplasma gondii. Here we define the Toxoplasma ERK7 interactome, and identify a putative E3 ligase, CSAR1, as the downstream effector responsible for the phenotype. Genetic disruption of CSAR1 fully suppresses loss of the apical complex upon ERK7 knockdown. Furthermore, we show that CSAR1 is normally responsible for turnover of maternal cytoskeleton during cytokinesis, and that its aberrant function is driven by a mislocalization from the parasite residual body to the maternal and daughter apical complexes. These data identify a protein homeostasis pathway critical for Toxoplasma replication and fitness and suggest an unappreciated role for the parasite residual body in compartmentalizing processes that threaten the fidelity of parasite development.



mBio ◽  
2021 ◽  
Author(s):  
Nicolas Dos Santos Pacheco ◽  
Nicolò Tosetti ◽  
Aarti Krishnan ◽  
Romuald Haase ◽  
Bohumil Maco ◽  
...  

The conoid is an enigmatic, dynamic organelle positioned at the apical tip of the coccidian subgroup of the Apicomplexa, close to the apical polar ring (APR) from which the subpellicular microtubules (SPMTs) emerge and through which the secretory organelles (micronemes and rhoptries) reach the plasma membrane for exocytosis. In Toxoplasma gondii , the conoid protrudes concomitantly with microneme secretion, during egress, motility, and invasion.



2021 ◽  
Vol 6 (3) ◽  
pp. 118
Author(s):  
Ferenc Orosz

In 2009, apicortin was identified in silico as a characteristic protein of apicomplexans that also occurs in the placozoa, Trichoplax adhaerens. Since then, it has been found that apicortin also occurs in free-living cousins of apicomplexans (chromerids) and in flagellated fungi. It contains a partial p25-α domain and a doublecortin (DCX) domain, both of which have tubulin/microtubule binding properties. Apicortin has been studied experimentally in two very important apicomplexan pathogens, Toxoplasma gondii and Plasmodium falciparum. It is localized in the apical complex in both parasites. In T. gondii, apicortin plays a key role in shaping the structure of a special tubulin polymer, conoid. In both parasites, its absence or downregulation has been shown to impair pathogen–host interactions. Based on these facts, it has been suggested as a therapeutic target for treatment of malaria and toxoplasmosis.



2021 ◽  
Author(s):  
Alana Burrell ◽  
Virginia Marugan-Hernandez ◽  
Flavia Moreira-Leite ◽  
David J P Ferguson ◽  
Fiona M Tomley ◽  
...  

The apical complex of apicomplexan parasites is essential for host cell invasion and intracellular survival and as the site of regulated exocytosis from specialised secretory organelles called rhoptries and micronemes. Despite its importance, there is little data on the three-dimensional organisation and quantification of these organelles within the apical complex or how they are trafficked to this specialised region of plasma membrane for exocytosis. In coccidian apicomplexans there is an additional tubulin-containing hollow barrel structure, the conoid, which provides a structural gateway for this specialised secretion. Using a combination of cellular electron tomography and serial block face-scanning electron microscopy (SBF-SEM) we have reconstructed the entire apical end of Eimeria tenella sporozoites. We discovered that conoid fibre number varied, but there was a fixed spacing between fibres, leading to conoids of different sizes. Associated apical structures varied in size to accommodate a larger or smaller conoid diameter. However, the number of subpellicular microtubules on the apical polar ring surrounding the conoid did not vary, suggesting a control of apical complex size. We quantified the number and location of rhoptries and micronemes within cells and show a highly organised gateway for trafficking and docking of rhoptries, micronemes and vesicles within the conoid around a set of intra-conoidal microtubules. Finally, we provide ultrastructural evidence for fusion of rhoptries directly through the parasite plasma membrane early in infection and the presence of a pore in the parasitophorous vacuole membrane, providing a structural explanation for how rhoptry proteins (ROPs) may be trafficked between the parasite and the host cytoplasm



2021 ◽  
Author(s):  
Dominique Soldati-Favre ◽  
Nicolas Dos Santos Pacheco ◽  
Nicolò Tosetti ◽  
Aarti Krishnan ◽  
Romuald Haase

Toxoplasma gondii ERK7 is known to contribute to the integrity of the apical complex and to be involved only in the final step of the conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade or egress from host cells. In contrast to a previous report, we show here that depletion of ERK7 phenocopies the depletion of the apical cap proteins AC9 or AC10. The absence of ERK7 leads to the loss of the apical polar ring, the disorganization of the basket of subpellicular microtubules and an impairment in micronemes secretion. Ultra-expansion microscopy (U-ExM) coupled to NHS-Ester staining on intracellular parasites offers an unprecedented level of resolution and highlights the disorganization of the rhoptries as well as the dilated plasma membrane at the apical pole in the absence of ERK7. Comparative proteomics analysis of wild-type and ERK7 or AC9 depleted parasites led to the disappearance of known, predicted, as well as putative novel components of the apical complex. In contrast, the absence of ERK7 led to an accumulation of microneme proteins, resulting from the defect in exocytosis of the organelles.



2020 ◽  
Vol 117 (22) ◽  
pp. 12164-12173 ◽  
Author(s):  
Peter S. Back ◽  
William J. O’Shaughnessy ◽  
Andy S. Moon ◽  
Pravin S. Dewangan ◽  
Xiaoyu Hu ◽  
...  

Apicomplexan parasites use a specialized cilium structure called the apical complex to organize their secretory organelles and invasion machinery. The apical complex is integrally associated with both the parasite plasma membrane and an intermediate filament cytoskeleton called the inner-membrane complex (IMC). While the apical complex is essential to the parasitic lifestyle, little is known about the regulation of apical complex biogenesis. Here, we identify AC9 (apical cap protein 9), a largely intrinsically disordered component of theToxoplasma gondiiIMC, as essential for apical complex development, and therefore for host cell invasion and egress. Parasites lacking AC9 fail to successfully assemble the tubulin-rich core of their apical complex, called the conoid. We use proximity biotinylation to identify the AC9 interaction network, which includes the kinase extracellular signal-regulated kinase 7 (ERK7). Like AC9, ERK7 is required for apical complex biogenesis. We demonstrate that AC9 directly binds ERK7 through a conserved C-terminal motif and that this interaction is essential for ERK7 localization and function at the apical cap. The crystal structure of the ERK7–AC9 complex reveals that AC9 is not only a scaffold but also inhibits ERK7 through an unusual set of contacts that displaces nucleotide from the kinase active site. ERK7 is an ancient and autoactivating member of the mitogen-activated kinase (MAPK) family and its regulation is poorly understood in all organisms. We propose that AC9 dually regulates ERK7 by scaffolding and concentrating it at its site of action while maintaining it in an “off” state until the specific binding of a true substrate.



eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Nicolò Tosetti ◽  
Nicolas Dos Santos Pacheco ◽  
Eloïse Bertiaux ◽  
Bohumil Maco ◽  
Lorène Bournonville ◽  
...  

The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule-organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid.



2020 ◽  
Author(s):  
Nicolò Tosetti ◽  
Nicolas Dos Santos Pacheco ◽  
Eloïse Bertiaux ◽  
Bohumil Maco ◽  
Lorène Bournonville ◽  
...  

AbstractToxoplasma gondii belongs to the coccidian sub-group of Apicomplexa that possess an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic and dynamic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR), a microtubule-organizing center for the 22 subpellicular microtubules (SPMTs). The SPMTs are linked to the Inner Membrane Complex (IMC), a patchwork of flattened vesicles, via an intricate network of small filaments composed of alveolins proteins. Here, we capitalize on super-resolution techniques including stimulated emission depletion (STED) microscopy and ultrastructure expansion microscopy (U-ExM) to localize the Apical Cap protein 9 (AC9) and its close partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Conditional depletion of AC9 or AC10 using the Auxin-induced Degron (AiD) system uncovered a severe loss of fitness. Parasites lacking AC9 or AC10 replicate normally but are defective in microneme secretion and hence fail to invade and egress from infected cells. Remarkably, a series of crucial apical complex proteins (MyoH, AKMT, FRM1, CPH1, ICMAP1 and RNG2) are lost in the mature parasites although they are still present in the forming daughter cells. Electron microscopy on intracellular or deoxycholate-extracted parasites revealed that the mature parasite mutants are conoidless. Closer examination of the SPMTs by U-ExM highlighted the disassembly of the SPMTs in the apical cap region that is presumably at the origin of the catastrophic loss of APR and conoid. AC9 and AC10 are two critical components of the alveolin network that ensure the integrity of the whole apical complex in T. gondii and likely other coccidians.



Sign in / Sign up

Export Citation Format

Share Document