scholarly journals Correction: Power and Predictive Accuracy of Polygenic Risk Scores

Author(s):  
Frank Dudbridge
2021 ◽  
Author(s):  
Paul O’Reilly ◽  
Shing Choi ◽  
Judit Garcia-Gonzalez ◽  
Yunfeng Ruan ◽  
Hei Man Wu ◽  
...  

Abstract Polygenic risk scores (PRSs) have been among the leading advances in biomedicine in recent years. As a proxy of genetic liability, PRSs are utilised across multiple fields and applications. While numerous statistical and machine learning methods have been developed to optimise their predictive accuracy, all of these distil genetic liability to a single number based on aggregation of an individual’s genome-wide alleles. This results in a key loss of information about an individual’s genetic profile, which could be critical given the functional sub-structure of the genome and the heterogeneity of complex disease. Here we evaluate the performance of pathway-based PRSs, in which polygenic scores are calculated across genomic pathways for each individual, and we introduce a software, PRSet, for computing and analysing pathway PRSs. We find that pathway PRSs have similar power for evaluating pathway enrichment of GWAS signal as the leading methods, with the distinct advantage of providing estimates of pathway genetic liability at the individual-level. Exemplifying their utility, we demonstrate that pathway PRSs can stratify diseases into subtypes in the UK Biobank with substantially greater power than genome-wide PRSs. Compared to genome-wide PRSs, we expect pathway-based PRSs to offer greater insights into the heterogeneity of complex disease and treatment response, generate more biologically tractable therapeutic targets, and provide a more powerful path to precision medicine.


2015 ◽  
Author(s):  
Bjarni Vilhjalmsson ◽  
Jian Yang ◽  
Hilary Kiyo Finucane ◽  
Alexander Gusev ◽  
Sara Lindstrom ◽  
...  

Polygenic risk scores have shown great promise in predicting complex disease risk, and will become more accurate as training sample sizes increase. The standard approach for calculating risk scores involves LD-pruning markers and applying a P-value threshold to association statistics, but this discards information and may reduce predictive accuracy. We introduce a new method, LDpred, which infers the posterior mean causal effect size of each marker using a prior on effect sizes and LD information from an external reference panel. Theory and simulations show that LDpred outperforms the pruning/thresholding approach, particularly at large sample sizes. Accordingly, prediction R2 increased from 20.1% to 25.3% in a large schizophrenia data set and from 9.8% to 12.0% in a large multiple sclerosis data set. A similar relative improvement in accuracy was observed for three additional large disease data sets and when predicting in non-European schizophrenia samples. The advantage of LDpred over existing methods will grow as sample sizes increase.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 286-286
Author(s):  
Anatoliy Yashin ◽  
Dequing Wu ◽  
Konstantin Arbeev ◽  
Arseniy Yashkin ◽  
Galina Gorbunova ◽  
...  

Abstract Persistent stress of external or internal origin accelerates aging, increases risk of aging related health disorders, and shortens lifespan. Stressors activate stress response genes, and their products collectively influence traits. The variability of stressors and responses to them contribute to trait heterogeneity, which may cause the failure of clinical trials for drug candidates. The objectives of this paper are: to address the heterogeneity issue; to evaluate collective interaction effects of genetic factors on Alzheimer’s disease (AD) and longevity using HRS data; to identify differences and similarities in patterns of genetic interactions within two genders; and to compare AD related genetic interaction patterns in HRS and LOADFS data. To reach these objectives we: selected candidate genes from stress related pathways affecting AD/longevity; implemented logistic regression model with interaction term to evaluate effects of SNP-pairs on these traits for males and females; constructed the novel interaction polygenic risk scores for SNPs, which showed strong interaction potential, and evaluated effects of these scores on AD/longevity; and compared patterns of genetic interactions within the two genders and within two datasets. We found there were many genes involved in highly significant interactions that were the same and that were different within the two genders. The effects of interaction polygenic risk scores on AD were strong and highly statistically significant. These conclusions were confirmed in analyses of interaction effects on longevity trait using HRS data. Comparison of HRS to LOADFS data showed that many genes had strong interaction effects on AD in both data sets.


2021 ◽  
Author(s):  
Alexander S. Hatoum ◽  
Emma C. Johnson ◽  
David A. A. Baranger ◽  
Sarah E. Paul ◽  
Arpana Agrawal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document