scholarly journals Identifying novel strategies for treating human hair loss disorders: Cyclosporine A suppresses the Wnt inhibitor, SFRP1, in the dermal papilla of human scalp hair follicles

PLoS Biology ◽  
2018 ◽  
Vol 16 (5) ◽  
pp. e2003705 ◽  
Author(s):  
Nathan J. Hawkshaw ◽  
Jonathan A. Hardman ◽  
Iain S. Haslam ◽  
Asim Shahmalak ◽  
Amos Gilhar ◽  
...  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF), adrenocorticotropic hormone (ACTH), and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs. Results CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS). Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC), ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


2020 ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background: Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF) , adrenocorticotropic hormone (ACTH) , and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs.Results: CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS) . Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC) , ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion: The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


2020 ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background: Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF) , adrenocorticotropic hormone (ACTH) , and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs. Results: CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS) . Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC) , ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion: The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


2015 ◽  
Vol 135 (8) ◽  
pp. 2129-2132 ◽  
Author(s):  
Nathan J. Hawkshaw ◽  
Iain S. Haslam ◽  
David M. Ansell ◽  
Asim Shamalak ◽  
Ralf Paus

2017 ◽  
Vol 4 (7) ◽  
pp. 58-58 ◽  
Author(s):  
Pietro Gentile ◽  
Maria G. Scioli ◽  
Alessandra Bielli ◽  
Augusto Orlandi ◽  
Valerio Cervelli

Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 267
Author(s):  
Kai-Che Wei ◽  
Wan-Ju Wei ◽  
Yi-Shan Liu ◽  
Li-Chen Yen ◽  
Tsung-Hsien Chang

Dengue virus (DENV)-mediated hair loss is one of the post-dengue fatigue syndromes and its pathophysiology remains unknown. Whether long-term or persistent infection with DENV in the scalp results in hair loss is unclear. In this study, we cultured human dermal fibroblasts (WS1 cells) and primary human hair-follicle dermal papilla cells (HFDPCs) in the long term with DENV-2 infection. The production of virion, the expression of inflammatory and anti-virus genes, and their signaling transduction activity in the infected cells were analyzed. DENV-2 NS3 protein and DENV-2 5′ UTR RNA were detected in fibroblasts and HFDPCs that were subjected to long-term infection with DENV-2 for 33 days. A significant amount of DENV-2 virion was produced by both WS1 cells and HFDPCs in the first two days of acute infection. The virion was also detected in WS1 cells that were infected in the long term, but HFDPCs failed to produce DENV-2 after long-term culture. Type I and type III interferons, and inflammatory cytokines were highly expressed in the acute phase of DENV infection in HFPDC and WS1 cells. However, in the long-term cultured cells, modest levels of anti-viral protein genes were expressed and we observed reduced signaling activity, which was correlated with the level of virus production changes. Long-term infection of DENV-2 downregulated the expression of hair growth regulatory factors, such as Rip1, Wnt1, and Wnt4. This in vitro study shows that the long-term infection with DENV-2 in dermal fibroblasts and dermal papilla cells may be involved with the prolonged-DENV-infection-mediated hair loss of post-dengue fatigue syndrome. However, direct evidence for viral replication in the human hair of a dengue victim or animal infection model is required.


2006 ◽  
Vol 642 (1) ◽  
pp. 452-453 ◽  
Author(s):  
M. J. THORNTON ◽  
K. HAMADA ◽  
I. LAING ◽  
A. G. MESSENGER ◽  
V. A. RANDALL

Sign in / Sign up

Export Citation Format

Share Document