scholarly journals On the Role of Aggregation Prone Regions in Protein Evolution, Stability, and Enzymatic Catalysis: Insights from Diverse Analyses

2013 ◽  
Vol 9 (10) ◽  
pp. e1003291 ◽  
Author(s):  
Patrick M. Buck ◽  
Sandeep Kumar ◽  
Satish K. Singh
Author(s):  
Paulo F.A. Costa ◽  
Rafael de Abreu ◽  
Andressa B. Fontana ◽  
Haidi D. Fiedler ◽  
Anthony J. Kirby ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuiqin Jiang ◽  
Lujia Zhang ◽  
Dongbin Cui ◽  
Zhiqiang Yao ◽  
Bei Gao ◽  
...  

Reproduction ◽  
2006 ◽  
Vol 131 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Nathaniel L Clark ◽  
Jan E Aagaard ◽  
Willie J Swanson

Sexual reproduction is a fundamental biological process common among eukaryotes. Because of the significance of reproductive proteins to fitness, the diversity and rapid divergence of proteins acting at many stages of reproduction is surprising and suggests a role of adaptive diversification in reproductive protein evolution. Here we review the evolution of reproductive proteins acting at different stages of reproduction among animals and plants, emphasizing common patterns. Although we are just beginning to understand these patterns, by making comparisons among stages of reproduction for diverse organisms we can begin to understand the selective forces driving reproductive protein diversity and the functional consequences of reproductive protein evolution.


2011 ◽  
Vol 100 (3) ◽  
pp. 536a
Author(s):  
Tyler Glembo
Keyword(s):  

2021 ◽  
Vol 8 ◽  
Author(s):  
Michele Monti ◽  
Alexandros Armaos ◽  
Marco Fantini ◽  
Annalisa Pastore ◽  
Gian Gaetano Tartaglia

Solubility is a requirement for many cellular processes. Loss of solubility and aggregation can lead to the partial or complete abrogation of protein function. Thus, understanding the relationship between protein evolution and aggregation is an important goal. Here, we analysed two deep mutational scanning experiments to investigate the role of protein aggregation in molecular evolution. In one data set, mutants of a protein involved in RNA biogenesis and processing, human TAR DNA binding protein 43 (TDP-43), were expressed in S. cerevisiae. In the other data set, mutants of a bacterial enzyme that controls resistance to penicillins and cephalosporins, TEM-1 beta-lactamase, were expressed in E. coli under the selective pressure of an antibiotic treatment. We found that aggregation differentiates the effects of mutations in the two different cellular contexts. Specifically, aggregation was found to be associated with increased cell fitness in the case of TDP-43 mutations, as it protects the host from aberrant interactions. By contrast, in the case of TEM-1 beta-lactamase mutations, aggregation is linked to a decreased cell fitness due to inactivation of protein function. Our study shows that aggregation is an important context-dependent constraint of molecular evolution and opens up new avenues to investigate the role of aggregation in the cell.


Sign in / Sign up

Export Citation Format

Share Document