scholarly journals Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response

PLoS Genetics ◽  
2016 ◽  
Vol 12 (12) ◽  
pp. e1006436 ◽  
Author(s):  
Idit Hazan ◽  
Thomas G. Hofmann ◽  
Rami I. Aqeilan
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1466-1466
Author(s):  
Yashodhara Dasgupta ◽  
Mateusz Koptyra ◽  
Margaret Nieborowska-Skorska ◽  
Elisabeth Bolton Gillespie ◽  
Tomasz Stoklosa ◽  
...  

Abstract BCR-ABL1 results from t(9;22)(q34;q11) reciprocal translocation resulting in BCR-ABL1 kinase expression, initiating chronic myeloid leukemia in chronic phase (CML-CP). At the initial stages of CML-CP both oncogenic BCR-ABL1 kinase and normal ABL1 kinase are expressed, however, loss of ABL1 kinase expression in CML-CP can result from an interstitial deletion in the normal chromosome 9 [del(9q34)] which may be combined with the transcriptional silencing of the alternative ABL1 promoter within the translocation eventually leading to disease progression and drug resistance. We found that BCR-ABL1 Abl1-/- cells generated a CML-blast phase (BP)-like disease phenotype in SCID mice compared to CML-CP-like disease from BCR-ABL1 Abl1+/+ cells. To determine the mechanisms responsible for blastic transformation of BCR-ABL1 Abl1-/- cells, we examined the role of ABL1 in proliferation, differentiation, apoptosis, genomic instability, and stemness. The presence of ABL1 inhibited proliferation in BCR-ABL1 cells as BCR-ABL1 Abl1-/- cells had higher clonogenic activity and proliferative rate compared to their wild-type counterparts. ABL1 is essential for myeloid differentiation since BCR-ABL1 Abl1-/- cells showed an immature blast phenotype when stained with Wright-Giemsa and myeloid differentiation markers Gr-1 and CD11b. ABL1 promoted apoptosis in response to genotoxic stress as revealed by reduced clonogenicity and elevated expression of p53, phosphoserine-15 p53 and activated caspase 3 in BCR-ABL1 Abl1 +/+ compared to knock-out cells. Although the absence of ABL1 did not enhance ROS and oxidative DNA damage, it appears that an impaired DNA damage response may be responsible for higher chromosome numbers and an accumulation of high numbers of chromosomal aberrations in BCR-ABL1 Abl1-/- cells. We detected an expansion of Lin-c-Kit+Sca-1+ leukemia stem cells (LSCs) in BCR-ABL1 Abl1-/- cells compared to BCR-ABL1 Abl1+/+ or non-transformed counterparts; among the LSCs, there was a higher percentage of CD34-Flt3- long-term and CD34+Flt3-short-term stem cells. These results showed that ABL1 is involved in regulating the LSC compartment in BCR-ABL1 cells. DNA microarray analysis revealed changes in mRNA levels of several genes involved in proliferation, myeloid differentiation, apoptosis, DNA damage response and stemness in BCR-ABL1 Abl1-/- cells in comparison to BCR-ABL1 Abl1+/+ cells. Together, these results demonstrated a critical role of ABL1 in BCR-ABL1-induced leukemia, prolonging survival in mice by suppressing proliferation and expansion of LSC, inducing myeloid differentiation, apoptosis and DNA damage response in BCR-ABL1 cells. Thus, it appears that ABL1 acts as a tumor suppressor in BCR-ABL1 –positive CML cells. Moreover, we hypothesized that the enhancement of the tumor suppressor function of ABL1 may have a significant impact on CML treatment. A small molecule activator of ABL1 kinase, 5-(1,3-diaryl-1H-pyrazol-4-yl)hydantoin (DPH), had been reported to interact with the myristoyl-binding site of ABL1 and destabilize the bent conformation of the α-1 helix, thereby preventing the auto-inhibitory conformation. DPH partially restored ABL1 activity in imatinib-treated cells. DPH-mediated stimulation of ABL1 tumor suppressor activity enhanced the effect of imatinib and ponatinib against CML CD34+ cells, Philadelphia chromosome-positive B-ALL (Ph+B-ALL) cells and relapsed Ph+B-ALL cells harboring T315I mutation without affecting normal counterparts. In summary, ABL1 is a potential tumor suppressor in BCR-ABL1-induced leukemia and stimulation of its function may play a significant role in the development of novel therapeutic strategies for CML and Ph+ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 110-110
Author(s):  
Matthew W. Jenner ◽  
Paola E. Leone ◽  
Brian A. Walker ◽  
David C. Johnson ◽  
Laura Chiecchio ◽  
...  

Abstract Abnormalities of 16q are important recurrent events in multiple myeloma (MM). We performed FISH on CD138 selected plasma cells from 701 newly diagnosed MM patients from the LRF UKMF cytogenetics database. Gene mapping, including paired normal controls, and gene expression analysis was performed on 55 cases using the Affymetrix Human Mapping 500K Array Set and U133 Plus 2.0 Arrays respectively. 16q deletion (del16q) was identified by FISH using probes for cMAF (Abbott Diagnostics) in 131/701 cases (18.7%) and was significantly associated with deletion 17p (16.5% vs. 8.9%, p=0.006), deletion 13 (60.8% vs. 48.5%, p=0.009), deletion of IgH (22.1% vs. 11.1%, p=0.0003) and non-hyperdiploid status (58.3% vs. 42.7%, p=0.006). Del16q showed a trend to poor overall survival, mean survival 43 vs. 61 months (p=0.09), and was associated with significantly worse survival in combination with t(4;14) compared with either t(4;14) or del16q alone, mean survival 15 vs. 26 vs. 45 months respectively (p=0.006). t(14;16) was identified by FISH in 31/701 cases (4.4%) and was associated with poor prognosis, mean survival 29 vs. 54 months (p=0.005). Mapping arrays revealed loss of heterozygosity (LOH) involving all or part of 16q in 20 of 55 cases (36%) in 3 distinct patterns: uniparental disomy (UPD) of chromosome 16 or 16q in 4/55 cases (7%); deletion of chromosome 16 or the whole of 16q in 11/55 cases (20%); and interstitial deletion of small regions of 16q in 5/55 cases (10%), focused on 16q12, the location of CYLD, and 16q23, the location of WWOX. 16q LOH was distributed across translocation groups but was identified in all 4 mapping cases containing 17p deletion, supporting the association identified by FISH. As WWOX is the site of the common fragile site FRA16D and deletions at common fragile sites have been associated with DNA instability in human cancers, we assessed this using gene mapping in these 55 MM cases. Although deletions spanning other common fragile sites were identified, they were not restricted to those with 16q LOH. However, in 2 t(14;16) cases, hemizygous deletions of approximately 100kb could be identified within WWOX at the presumed translocation breakpoint. One of the t(14;16) cases had a similar hemizygous deletion within FHIT, another tumor suppressor gene located within common fragile site FRA3B, consistent with findings in other cancer types. Cases with 16q LOH or t(14;16) all had significantly reduced WWOX expression relative to cases without 16q abnormalities, confirming gene inactivation by either LOH or translocation. Cases with 16q LOH also had significantly reduced expression of two other potential tumor suppressor genes located on 16q, CYLD and RBL2. In summary, our data confirms the adverse prognosis associated with 16q translocation or deletion. Array data reveals 16q LOH occurs due to deletion or UPD with two regions involved, one defined by CYLD and the other by WWOX. WWOX is also inactivated by translocation and is associated with interstitial deletions at this and other common fragile sites. WWOX is a likely candidate gene in MM pathogenesis because of its interaction with TP53 and CYLD via its effects on NF-κB.


2012 ◽  
Vol 421 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Yukari Yoshihara ◽  
Dan Wu ◽  
Natsumi Kubo ◽  
Meixiang Sang ◽  
Akira Nakagawara ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yinxing Ma ◽  
Licia Silveri ◽  
John LaCava ◽  
Svetlana Dokudovskaya

2019 ◽  
Vol 79 (12) ◽  
pp. 3050-3062 ◽  
Author(s):  
Shandy Shahabi ◽  
Vishaly Kumaran ◽  
Jonathan Castillo ◽  
Zhengmin Cong ◽  
Gopika Nandagopal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document