scholarly journals C. elegans RAB-35: Dual roles in apoptotic cell clearance

PLoS Genetics ◽  
2018 ◽  
Vol 14 (8) ◽  
pp. e1007534
Author(s):  
Christian E. Rocheleau
2021 ◽  
Vol 22 (16) ◽  
pp. 8934
Author(s):  
Szilvia Lukácsi ◽  
Zsolt Farkas ◽  
Éva Saskői ◽  
Zsuzsa Bajtay ◽  
Krisztina Takács-Vellai

Endocytosis provides the cellular nutrition and homeostasis of organisms, but pathogens often take advantage of this entry point to infect host cells. This is counteracted by phagocytosis that plays a key role in the protection against invading microbes both during the initial engulfment of pathogens and in the clearance of infected cells. Phagocytic cells balance two vital functions: preventing the accumulation of cell corpses to avoid pathological inflammation and autoimmunity, whilst maintaining host defence. In this review, we compare elements of phagocytosis in mammals and the nematode Caenorhabditis elegans. Initial recognition of infection requires different mechanisms. In mammals, pattern recognition receptors bind pathogens directly, whereas activation of the innate immune response in the nematode rather relies on the detection of cellular damage. In contrast, molecules involved in efferocytosis—the engulfment and elimination of dying cells and cell debris—are highly conserved between the two species. Therefore, C. elegans is a powerful model to research mechanisms of the phagocytic machinery. Finally, we show that both mammalian and worm studies help to understand how the two phagocytic functions are interconnected: emerging data suggest the activation of innate immunity as a consequence of defective apoptotic cell clearance.


2017 ◽  
Vol 216 (6) ◽  
pp. 1775-1794 ◽  
Author(s):  
Jianhua Yin ◽  
Yaling Huang ◽  
Pengfei Guo ◽  
Siqi Hu ◽  
Sawako Yoshina ◽  
...  

Apoptotic cells generated by programmed cell death are engulfed by phagocytes and enclosed within plasma membrane–derived phagosomes. Maturation of phagosomes involves a series of membrane-remodeling events that are governed by the sequential actions of Rab GTPases and lead to formation of phagolysosomes, where cell corpses are degraded. Here we identified gop-1 as a novel regulator of apoptotic cell clearance in Caenorhabditis elegans. Loss of gop-1 affects phagosome maturation through the RAB-5–positive stage, causing defects in phagosome acidification and phagolysosome formation, phenotypes identical to and unaffected by loss of unc-108, the C. elegans Rab2. GOP-1 transiently associates with cell corpse–containing phagosomes, and loss of its function abrogates phagosomal association of UNC-108. GOP-1 interacts with GDP-bound and nucleotide-free UNC-108/Rab2, disrupts GDI-UNC-108 complexes, and promotes activation and membrane recruitment of UNC-108/Rab2 in vitro. Loss of gop-1 also abolishes association of UNC-108 with endosomes, causing defects in endosome and dense core vesicle maturation. Thus, GOP-1 is an activator of UNC-108/Rab2 in multiple processes.


Lupus ◽  
2001 ◽  
Vol 10 (9) ◽  
pp. 656-657 ◽  
Author(s):  
A P Cairns ◽  
A D Crockard ◽  
A L Bell

2020 ◽  
Author(s):  
Sergio M. Pontejo ◽  
Philip M. Murphy

AbstractChemokines are positively charged cytokines that attract leukocytes by binding to anionic glycosaminoglycans (GAGs) on endothelial cells for efficient presentation to leukocyte G protein-coupled receptors (GPCRs). The atypical chemokine CXCL16 has been reported to also bind the anionic phospholipid phosphatidylserine (PS), but the biological relevance of this interaction remains poorly understood. Here we demonstrate that PS binding is in fact a widely shared property of chemokine superfamily members that, like GAG binding, induces chemokine oligomerization. PS is an essential phospholipid of the inner leaflet of the healthy cell plasma membrane but it is exposed in apoptotic cells to act as an ‘eat-me’ signal that promotes engulfment of dying cells by phagocytes. We found that chemokines can bind PS in pure form as well as in the context of liposomes and on the surface of apoptotic cells and extracellular vesicles released by apoptotic cells, which are known to act as ‘find-me’ signals that chemoattract phagocytes during apoptotic cell clearance. Importantly, we show that GAGs are severely depleted from the surface of apoptotic cells and that extracellular vesicles extracted from apoptotic mouse thymus bind endogenous thymic chemokines and activate cognate chemokine receptors. Together these results indicate that chemokines tethered to surface-exposed PS may be responsible for the chemotactic and find-me signal activity previously attributed to extracellular vesicles, and that PS may substitute for GAGs as the anionic scaffold that regulates chemokine oligomerization and presentation to GPCRs on the GAG-deficient membranes of apoptotic cells and extracellular vesicles. Here, we present a new mechanism by which extracellular vesicles, currently recognized as essential agents for intercellular communication in homeostasis and disease, can transport signaling cytokines.


Author(s):  
Emma Louise Armitage ◽  
Hannah Grace Roddie ◽  
Iwan Robert Evans

AbstractApoptotic cell clearance by phagocytes is a fundamental process during development, homeostasis and the resolution of inflammation. However, the demands placed on phagocytic cells such as macrophages by this process, and the limitations these interactions impose on subsequent cellular behaviours are not yet clear. Here we seek to understand how apoptotic cells affect macrophage function in the context of a genetically-tractable Drosophila model in which macrophages encounter excessive amounts of apoptotic cells. We show that loss of the glial transcription factor repo, and corresponding removal of the contribution these cells make to apoptotic cell clearance, causes macrophages in the developing embryo to be challenged with large numbers of apoptotic cells. As a consequence, macrophages become highly vacuolated with cleared apoptotic cells and their developmental dispersal and migration is perturbed. We also show that the requirement to deal with excess apoptosis caused by a loss of repo function leads to impaired inflammatory responses to injury. However, in contrast to migratory phenotypes, defects in wound responses cannot be rescued by preventing apoptosis from occurring within a repo mutant background. In investigating the underlying cause of these impaired inflammatory responses, we demonstrate that wound-induced calcium waves propagate into surrounding tissues, including neurons and glia of the ventral nerve cord, which exhibit striking calcium waves on wounding, revealing a previously unanticipated contribution of these cells during responses to injury. Taken together these results demonstrate important insights into macrophage biology and how repo mutants can be used to study macrophage-apoptotic cell interactions in the fly embryo.Furthermore, this work shows how these multipurpose cells can be ‘overtasked’ to the detriment of their other functions, alongside providing new insights into which cells govern macrophage responses to injury in vivo.


Sign in / Sign up

Export Citation Format

Share Document