cell corpse
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 4)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 55 (S1) ◽  
pp. 161-170
Author(s):  
Francisco J. López-Hernández ◽  

Apoptosis is a programmed form of cell death culminating in packing cell content and corpse dismantling into membrane sealed vesicles called apoptotic bodies (ABs). Apoptotic bodies are engulfed and disposed by neighboring and immune system cells without eliciting a noxious inflammatory response, thus preventing sterile tissue damage. AB formation requires a total surface area larger than the apparent, initial cell's surface area. Apoptotic volume decrease (AVD) is a two-stage process leading to an isotonic, osmotic reduction in cell water content driven by net K+ and Cl- extrusion. In this article, the role of AVD is presented from a geometric point of view through the process of AB formation. AVD decisively contributes to (i) endowing the cell with the appropriate electrolytic environment for apoptotic execution; (ii) increasing the membrane surface area-to-volume ratio, along with the mobilization of membrane reservoirs (cell rounding, membrane folds and endosomal membranes), so that the cell corpse can be dismantled into ABs; and (iii) reducing plasmalemmal stretch, tension and stiffness, thus facilitating membrane bulging, blebbing and vesicle expansion ultimately leading to separation and release.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Diane P V Lebo ◽  
Alice Chirn ◽  
Jeffrey D Taylor ◽  
Andre Levan ◽  
Valentina Doerre Torres ◽  
...  

Abstract Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions. Here, we use the Drosophila melanogaster ovary to identify novel genes required for clearance by nonprofessional phagocytes. In the Drosophila ovary, germline cells can die at multiple time points. As death proceeds, the epithelial follicle cells act as phagocytes to facilitate the clearance of these cells. We performed an unbiased kinase screen to identify novel proteins and pathways involved in cell clearance during two death events. Of 224 genes examined, 18 demonstrated severe phenotypes during developmental death and clearance while 12 demonstrated severe phenotypes during starvation-induced cell death and clearance, representing a number of pathways not previously implicated in phagocytosis. Interestingly, it was found that several genes not only affected the clearance process in the phagocytes, but also non-autonomously affected the process by which germline cells died. This kinase screen has revealed new avenues for further exploration and investigation.


2019 ◽  
Author(s):  
Takuma Shibata ◽  
Masato Taoka ◽  
Shin-Ichiroh Saitoh ◽  
Yoshio Yamauchi ◽  
Yuji Motoi ◽  
...  

AbstractA lysosomal transmembrane protein SLC29A3 transports nucleosides from lysosomes to the cytoplasm. Loss-of-function mutations of the SLC29A3 gene cause lysosomal nucleoside storage in monocyte/macrophages, leading to their accumulation called histiocytosis in humans and mice. Little is known, however, about a mechanism behind nucleoside-dependent histiocytosis. TLR7, an innate immune sensors for single stranded RNA, bind and respond to nucleosides. We here show that they drive nucleoside-mediated histiocytosis. Patrolling monocyte/macrophages accumulate in the spleen of Slc29a3−/− mice but not Slc29a3−/−Tlr7−/− mice. Accumulated patrolling monocyte/macrophages stored nucleosides derived from cell corpse. TLR7 was recruited to phagosomes and activated as evidenced by TLR7-dependent phagosomal maturation. TLR7 induced hyper-responsiveness to M-CSF in Slc29a3−/− monocyte/macrophages. These results suggest that TLR7 drives histiocytosis in SLC29A3 disorders.One Sentence SummarySLC29A3 disorders are caused by activation of TLR7 with accumulated nucleosides in lysosomes.


2019 ◽  
Vol 218 (8) ◽  
pp. 2619-2637 ◽  
Author(s):  
Qiwen Gan ◽  
Xin Wang ◽  
Qian Zhang ◽  
Qiuyuan Yin ◽  
Youli Jian ◽  
...  

Phagocytic removal of apoptotic cells involves formation, maturation, and digestion of cell corpse–containing phagosomes. The retrieval of lysosomal components following phagolysosomal digestion of cell corpses remains poorly understood. Here we reveal that the amino acid transporter SLC-36.1 is essential for lysosome reformation during cell corpse clearance in Caenorhabditis elegans embryos. Loss of slc-36.1 leads to formation of phagolysosomal vacuoles arising from cell corpse–containing phagosomes. In the absence of slc-36.1, phagosome maturation is not affected, but the retrieval of lysosomal components is inhibited. Moreover, loss of PPK-3, the C. elegans homologue of the PtdIns3P 5-kinase PIKfyve, similarly causes accumulation of phagolysosomal vacuoles that are defective in phagocytic lysosome reformation. SLC-36.1 and PPK-3 function in the same genetic pathway, and they directly interact with one another. In addition, loss of slc-36.1 and ppk-3 causes strong defects in autophagic lysosome reformation in adult animals. Our findings thus suggest that the PPK-3–SLC-36.1 axis plays a central role in both phagocytic and autophagic lysosome formation.


2018 ◽  
Author(s):  
Ryan C. Haley ◽  
Ying Wang ◽  
Zheng Zhou

AbstractIn metazoans, apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Multiple small GTPases in the Rab family are known to function in phagosome maturation by regulating vesicle trafficking. We discovered rab-35 as a new gene important for apoptotic cell clearance using an RNAi screen targeting putative Rab GTPases in Caenorhabditis elegans. We further identified TBC-10 as a putative GTPase-activating protein (GAP), and FLCN-1 and RME-4 as two putative Guanine Nucleotide Exchange Factors (GEFs), for RAB-35. RAB-35 function was found to be required for the incorporation of early endosomes to phagosomes and for the timely degradation of apoptotic cell corpses. More specifically, RAB-35 facilitates the switch of phagosomal membrane phosphatidylinositol species from PtdIns(4,5)P2 to PtdIns(3)P and promotes the recruitment of the small GTPase RAB-5 to phagosomal surfaces, processes that are essential for phagosome maturation. Interestingly, we observed that CED-1 performs these same functions, and to a much larger extent than RAB-35. Remarkably, in addition to cell corpse degradation, RAB-35 also facilitates the recognition of cell corpses independently of the CED-1 and CED-5 pathways. RAB-35 localizes to extending pseudopods and is further enriched on nascent phagosomes, consistent with its dual roles in regulating cell corpse-recognition and phagosome maturation. Epistasis analyses indicate that rab-35 represents a novel third genetic pathway that acts in parallel to both of the canonical ced-1/6/7 and ced-2/5/10/12 engulfment pathways. We propose that RAB-35 acts as a robustness factor, leading a pathway that aids the canonical pathways for the engulfment and degradation of apoptotic cells.


2017 ◽  
Author(s):  
Sarah-Lena Offenburger ◽  
Xue Yan Ho ◽  
Theresa Tachie-Menson ◽  
Sean Coakley ◽  
Massimo A. Hilliard ◽  
...  

AbstractOxidative stress is linked to many pathological conditions including the loss of dopaminergic neurons in Parkinson’s disease. The vast majority of disease cases appear to be caused by a combination of genetic mutations and environmental factors. We screened for genes protecting Caenorhabditis elegans dopaminergic neurons from oxidative stress induced by the neurotoxin 6-hydroxydopamine (6-OHDA) and identified the transthyretin-related gene ttr-33. The only described C. elegans transthyretin-related protein to date, TTR-52, has been shown to mediate corpse engulfment as well as axon repair. We demonstrate that TTR-52 and TTR-33 have distinct roles. TTR-33 is likely produced in the posterior arcade cells in the head of C. elegans larvae and is predicted to be a secreted protein. TTR-33 protects C. elegans from oxidative stress induced by paraquat or H2O2 at an organismal level. The increased oxidative stress sensitivity of ttr-33 mutants is alleviated by mutations affecting the KGB-1 MAPK kinase pathway, whereas it is enhanced by mutation of the JNK-1 MAPK kinase. Finally, we provide genetic evidence that the C. elegans cell corpse engulfment pathway is required for the degeneration of dopaminergic neurons after exposure to 6-OHDA. In summary, we describe a new neuroprotective mechanism and demonstrate that TTR-33 normally functions to protect dopaminergic neurons from oxidative stress-induced degeneration, potentially by acting as a secreted sensor or scavenger of oxidative stress.Author summaryAnimals employ multiple mechanisms to prevent their cells from damage by reactive oxygen species, chemically reactive molecules containing oxygen. Oxidative stress, caused by the overabundance of reactive oxygen species or a decreased cellular defence against these chemicals, is linked to a variety of neurodegenerative conditions, including the loss of dopaminergic neurons in Parkinson’s disease. In this study, we discovered a novel protective molecule that functions to prevent dopaminergic neurodegeneration caused by oxidative stress induced by the neurotoxin 6-hydroxydopamine (6-OHDA). We used the nematode C. elegans, a well-characterised model in which mechanisms can be studied on an organismal level. When C. elegans is exposed to 6-OHDA, its dopaminergic neurons gradually die. Our major findings include (i) mutations of the transthyretin-related gene ttr-33 causes highly increased dopaminergic neurodegeneration after 6-OHDA exposure; (ii) TTR-33 is likely produced and secreted by several cells in the head of the animal; (iii) TTR-33 protects against oxidative stress induced by other compounds; (iv) mutations in the KGB-1 MAP kinase stress pathway alleviate dopaminergic neuron loss in the ttr-33 mutant; and (v) the cell corpse engulfment pathway is required for dopaminergic neurodegeneration. We hypothesise that TTR-33 protects dopaminergic neurons against 6-OHDA-induced oxidative stress by acting as an oxygen sensor or scavenger.


2017 ◽  
Vol 428 (1) ◽  
pp. 215-223 ◽  
Author(s):  
Dou Wu ◽  
Yongping Chai ◽  
Zhiwen Zhu ◽  
Wenjing Li ◽  
Guangshuo Ou ◽  
...  

2017 ◽  
Vol 216 (6) ◽  
pp. 1775-1794 ◽  
Author(s):  
Jianhua Yin ◽  
Yaling Huang ◽  
Pengfei Guo ◽  
Siqi Hu ◽  
Sawako Yoshina ◽  
...  

Apoptotic cells generated by programmed cell death are engulfed by phagocytes and enclosed within plasma membrane–derived phagosomes. Maturation of phagosomes involves a series of membrane-remodeling events that are governed by the sequential actions of Rab GTPases and lead to formation of phagolysosomes, where cell corpses are degraded. Here we identified gop-1 as a novel regulator of apoptotic cell clearance in Caenorhabditis elegans. Loss of gop-1 affects phagosome maturation through the RAB-5–positive stage, causing defects in phagosome acidification and phagolysosome formation, phenotypes identical to and unaffected by loss of unc-108, the C. elegans Rab2. GOP-1 transiently associates with cell corpse–containing phagosomes, and loss of its function abrogates phagosomal association of UNC-108. GOP-1 interacts with GDP-bound and nucleotide-free UNC-108/Rab2, disrupts GDI-UNC-108 complexes, and promotes activation and membrane recruitment of UNC-108/Rab2 in vitro. Loss of gop-1 also abolishes association of UNC-108 with endosomes, causing defects in endosome and dense core vesicle maturation. Thus, GOP-1 is an activator of UNC-108/Rab2 in multiple processes.


2014 ◽  
Vol 25 (13) ◽  
pp. 2071-2083 ◽  
Author(s):  
Meng Xu ◽  
Yubing Liu ◽  
Liyuan Zhao ◽  
Qiwen Gan ◽  
Xiaochen Wang ◽  
...  

During programmed cell death, the clearance of apoptotic cells is achieved by their phagocytosis and delivery to lysosomes for destruction in engulfing cells. However, the role of lysosomal proteases in cell corpse destruction is not understood. Here we report the identification of the lysosomal cathepsin CPL-1 as an indispensable protease for apoptotic cell removal in Caenorhabditis elegans. We find that loss of cpl-1 function leads to strong accumulation of germ cell corpses, which results from a failure in degradation rather than engulfment. CPL-1 is expressed in a variety of cell types, including engulfment cells, and its mutation does not affect the maturation of cell corpse–containing phagosomes, including phagosomal recruitment of maturation effectors and phagosome acidification. Of importance, we find that phagosomal recruitment and incorporation of CPL-1 occurs before digestion of cell corpses, which depends on factors required for phagolysosome formation. Using RNA interference, we further examine the role of other candidate lysosomal proteases in cell corpse clearance but find that they do not obviously affect this process. Collectively, these findings establish CPL-1 as the leading lysosomal protease required for elimination of apoptotic cells in C. elegans.


2014 ◽  
Vol 21 (6) ◽  
pp. 845-853 ◽  
Author(s):  
L J Neukomm ◽  
S Zeng ◽  
A P Frei ◽  
P A Huegli ◽  
M O Hengartner

Sign in / Sign up

Export Citation Format

Share Document