scholarly journals Pathogenic BCL11A variants provide insights into the mechanisms of human fetal hemoglobin silencing

PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009835
Author(s):  
Yong Shen ◽  
Rick Li ◽  
Kristian Teichert ◽  
Kara E. Montbleau ◽  
Jeffrey M. Verboon ◽  
...  

Increased production of fetal hemoglobin (HbF) can ameliorate the severity of sickle cell disease and β-thalassemia. BCL11A has been identified as a key regulator of HbF silencing, although its precise mechanisms of action remain incompletely understood. Recent studies have identified pathogenic mutations that cause heterozygous loss-of-function of BCL11A and result in a distinct neurodevelopmental disorder that is characterized by persistent HbF expression. While the majority of cases have deletions or null mutations causing haploinsufficiency of BCL11A, several missense variants have also been identified. Here, we perform functional studies on these variants to uncover specific liabilities for BCL11A’s function in HbF silencing. We find several mutations in an N-terminal C2HC zinc finger that increase proteasomal degradation of BCL11A. We also identify a distinct C-terminal missense variant in the fifth zinc finger domain that we demonstrate causes loss-of-function through disruption of DNA binding. Our analysis of missense variants causing loss-of-function in vivo illuminates mechanisms by which BCL11A silences HbF and also suggests potential therapeutic avenues for HbF induction to treat sickle cell disease and β-thalassemia.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 974-974 ◽  
Author(s):  
Samuel Lessard ◽  
Pauline Rimmele ◽  
Hui Ling ◽  
Kevin Moran ◽  
Benjamin Vieira ◽  
...  

High fetal hemoglobin (HbF) levels are associated with decreased severity and mortality in sickle cell disease (SCD) and beta thalassemia (BT). We have developed a novel gene-edited cell therapy using autologous hematopoietic stem and progenitor cells (HSPCs) that have been genetically modified with zinc finger nucleases (ZFNs) to reactivate HbF expression. The ZFNs target the binding motif of GATA1 (GATAA) within an intronic erythroid-specific enhancer (ESE) of BCL11A, which encodes a major transcriptional repressor of HbF. Previously, we reported successful ZFN-mediated editing of the BCL11A ESE and reactivation of HbF in both dual (granulocyte colony-stimulating factor (G-CSF) and plerixafor) and single plerixafor mobilized HSPCs(Holmes 2017, Moran 2018). Both related drug candidates, ST-400 and BIVV003, are currently in phase 1/2a clinical trials for transfusion-dependent BT (NCT03432364) and SCD (NCT03653247), respectively. Here, we performed extensive genetic and phenotypic characterization of ZFN-edited HSPCs from healthy and SCD donors. We performed single-cell characterization of BCL11A ESE-edited HSPCs from 4 healthy donors. Briefly, individual HSPCs were sorted and cultured in erythroid differentiation medium. Genomic DNA and protein lysate were collected at day 14 and 20, respectively. In total, we successfully genotyped 961 single-cell derived colonies by next-generation sequencing. The distribution was highly skewed towards biallelic-edited cells (P<3x10-149) representing 94% of edited clones, suggesting that ZFN-expressing cells are likely to become edited at both alleles. We found that each edited allele contributed additively to an increase in HbF% of 15% (P=1x10-80) as measured by UPLC. Clones harboring GATAA-disrupting indels on both alleles displayed on average 34% more HbF% than WT clones (P=1x10-112). In contrast, clones with biallelic indels that left the motif intact displayed a more modest increase (13%, P=1x10-6). Overall, our data revealed that >90% of edited cells were biallelic, displaying on average 27-38% more HbF% despite variation in donor baseline levels. We observed a strong enrichment of biallelic-edited homozygotes (same indel pattern at both alleles) compared to an expected random distribution (161 vs 24; P<1x10-5). These clones may harbor larger deletions not captured by sequencing, as reported previously using CRISPR/Cas9 (Kosicki 2018). To address this question, we used a combination of a small amplicon sequencing assay design covering an informative SNP and a 12kb amplicon Nextera assay. We found that 27% of initially assigned homozygote clones were bona fide homozygotes (44/161) with the remaining harboring indels not originally captured. Nevertheless, most indels remained small, with 91% of indels <50bp, and deletions and insertions >1kb together consisting of less than 1% of alleles. The largest deletion was 4kb, but no indel extended outside the enhancer region of BCL11A or altered the coding region (>26 kb away). Moreover indels >50bp were not associated with enucleation levels (P=0.77), suggesting that they did not alter erythroid function. Overall, these results are consistent with previous data showing that ZFN-mediated gene editing does not impair HSPC function in vitro based on colony forming unit (CFU) production, and that injection of BIVV003 into immune-deficient NBSGW mice results in robust long-term engraftment with no impact on the number of HSPCs or their progeny, including erythrocytes. Finally, BCL11A ESE editing in HSPCs mobilized from one SCD donor resulted in a 3-fold HbF increase consistent across technical duplicates, without impacting CFU production or erythroid enucleation. Importantly, clonal analysis revealed a similar enrichment of biallelic editing (P=6x10-4) and additive HbF up-regulation, with biallelic edited cells reaching 28% more HbF% than unedited cells (50% vs 22%, P=7x10-5). Furthermore, enucleated cells differentiated from edited HSPCs showed attenuation of sickling under hypoxic conditions supporting the potential efficacy of BIVV003. Experiments in HSPCs from additional SCD donors are ongoing. Overall, our data have shown that ZFN-mediated disruption of BCL11A ESE results in enriched biallelic editing with on-target small indels, reactivates HbF and reduces sickling, supporting the potential efficacy and specificity of BIVV003 as a novel cell therapy for SCD. Disclosures Lessard: Sanofi: Employment. Rimmele:Sanofi: Employment. Ling:Sanofi: Employment. Moran:Sanofi: Employment. Vieira:Sanofi: Employment. Lin:Sanofi: Employment. Hong:Sanofi: Employment. Reik:Sangamo Therapeutics: Employment. Dang:Sangamo Therapeutics: Employment. Rendo:Sanofi: Employment. Daak:Sanofi: Employment. Hicks:Sanofi: Employment.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1119-1124 ◽  
Author(s):  
B. N. Yamaja Setty ◽  
Surekha Kulkarni ◽  
A. Koneti Rao ◽  
Marie J. Stuart

In sickle cell disease (SCD), loss of erythrocyte membrane phospholipid asymmetry occurs with the exposure of phosphatidylserine (PS), which provides a docking site for coagulation proteins. In vivo sickling/desickling, with resulting red cell membrane changes and microvesicle formation, appears to be one of the factors responsible for PS exposure. We evaluated children with SCD homozygous for sickle hemoglobin (SS disease) and controls (n = 65) and demonstrate that high levels of fetal hemoglobin (assessed as F cells) are associated with decreased microvesicle formation, PS exposure, and thrombin generation. F cells correlated inversely with both microvesicles and PS positivity (P < .000001) in SS disease. Multiple regression analyses using various hematologic parameters as independent variables, and either microvesicles or PS positivity as the dependent variable, showed a strong relationship only with F cells. Additionally, plasma prothrombin fragment F1.2 levels (a marker for thrombin generation) correlated with both PS positivity (P < .001) and F cells (P < .01). An F-cell level of approximately 70% was associated with normal levels of prothrombin fragment F1.2 and with microvesicle formation indistinguishable from control values. We suggest that the use of such surrogate biologic markers in conjunction with F-cell numbers may provide valuable insights into the biology and consequences of in vivo sickling.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1119-1124 ◽  
Author(s):  
B. N. Yamaja Setty ◽  
Surekha Kulkarni ◽  
A. Koneti Rao ◽  
Marie J. Stuart

Abstract In sickle cell disease (SCD), loss of erythrocyte membrane phospholipid asymmetry occurs with the exposure of phosphatidylserine (PS), which provides a docking site for coagulation proteins. In vivo sickling/desickling, with resulting red cell membrane changes and microvesicle formation, appears to be one of the factors responsible for PS exposure. We evaluated children with SCD homozygous for sickle hemoglobin (SS disease) and controls (n = 65) and demonstrate that high levels of fetal hemoglobin (assessed as F cells) are associated with decreased microvesicle formation, PS exposure, and thrombin generation. F cells correlated inversely with both microvesicles and PS positivity (P &lt; .000001) in SS disease. Multiple regression analyses using various hematologic parameters as independent variables, and either microvesicles or PS positivity as the dependent variable, showed a strong relationship only with F cells. Additionally, plasma prothrombin fragment F1.2 levels (a marker for thrombin generation) correlated with both PS positivity (P &lt; .001) and F cells (P &lt; .01). An F-cell level of approximately 70% was associated with normal levels of prothrombin fragment F1.2 and with microvesicle formation indistinguishable from control values. We suggest that the use of such surrogate biologic markers in conjunction with F-cell numbers may provide valuable insights into the biology and consequences of in vivo sickling.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 26-27
Author(s):  
Keqiang Xie ◽  
Mark Roth ◽  
Ivan Efremov ◽  
Serena Silver ◽  
Lucienne Ronco ◽  
...  

Sickle cell disease (SCD) results from genetic mutation in the β-globin gene encoding a subunit of the adult form of hemoglobin (HbA), leading to red blood cell (RBC) deformation and disease pathology. It has been demonstrated that reactivation of the fetal ortholog of the hemoglobin beta subunit, HBγ (also referred to as HBG proteins), can prevent or reduce disease-related pathophysiology. In SCD, the presence of HBG protein in hemoglobin tetramers prevents sickle hemoglobin polymerization under deoxygenated conditions and therefore may be of therapeutic benefit in SCD. FTX 6058, a novel orally bioavailable small molecule, is in development for the treatment of sickle cell disease (SCD) by Fulcrum Therapeutics. FTX-6058 was demonstrated to inhibit the novel biological target and elevate the expression of HBγ, resulting in induction of fetal hemoglobin (HbF) tetramer in differentiated human primary CD34+ cells. The in vivo target engagement (TE) and pharmacologic effects of FTX-6058 were characterized in wild-type CD-1 mice and humanized Townes SCD mice, with TE also confirmed in non-human primates. In CD-1 mice, once-daily (QD) FTX-6058 oral administration induced TE in a time- and dose-dependent manner and most markedly in erythroid lineage (Ter119+) cells derived from bone marrow, the putative therapeutic compartment, and increased transcript levels of Hbb-bh1, a murine embryonic hemoglobin surrogate for human HBG gene. Steady state TE in circulating monocytes, following repeated QD FTX-6058 administration, correlated well with that in bone marrow-derived erythroid cells, suggesting peripheral monocytes as a suitable surrogate for assessing erythroid TE activity in Fulcrum's Phase 1 study. In non-human primate cynomolgus monkeys, QD oral dosing of FTX-6058 as early as for 7 days induced robust and comparable TE in bone marrow derived CD34+ erythroid progenitors and circulating monocytes, further supporting the use of monocytes to assess TE in bone marrow. Mouse data also provided evidence of the reversibility of TE effects once dosing is stopped. In repeat-dose studies in the humanized Townes SCD mouse model, FTX-6058 was superior to standard of care hydroxyurea as measured by human HBG1 transgene induction and increased %F-cells and HBG1 protein levels. Furthermore, the induction of %F cells was sustainable for several days after dosing cessation. These in vivo studies have demonstrated that FTX-6058 engages its novel biological target in multiple preclinical models and induces HbF expression at plasma concentrations likely to b e readily achievable in clinic, and peripheral monocytes is a suitable surrogate for assessing TE in bone marrow erythroid cells, which could be beneficial to patients with SCD. Disclosures Xie: Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Roth:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Efremov:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Silver:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Ronco:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Thompson:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Stickland:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Moxham:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company. Wallace:Fulcrum Therepeutics: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1861-1868 ◽  
Author(s):  
BA Miller ◽  
SP Perrine ◽  
A Bernstein ◽  
SD Lyman ◽  
DE Williams ◽  
...  

Abstract A new hematopoietic growth factor (Steel factor) has been identified which stimulates erythroid proliferation both in vitro and in vivo. We evaluated the influence of recombinant Steel factor on hemoglobin synthesis in peripheral blood (PB) BFU-E-derived cells from normal donors by radioimmunoassay (RIA) and compared it with stimulation with GM-CSF and interleukin-3 (IL-3). Only Steel factor stimulated a significant increase in BFU-E-derived colony size and a significant increase in fetal hemoglobin (HbF) in BFU-E-derived erythroblasts from 0.49% +/- 0.27% to 6.33% +/- 1.11% in serum-deprived media and from 1.88% +/- 0.24% to 11.17% +/- 0.91% in serum. To determine whether this influence on hemoglobinization also occurred in sickle cell disease, we studied 13 patients with sickle cell disease. In serum-deprived conditions, there was a significant increase in the number and size of BFU-E-derived colonies with Steel factor that was dose-dependent. In addition, the proportion of HbF in progenitor-derived cells increased by 66% from 4.1% +/- 0.6% to 6.8% +/- 1.2% with Steel factor. In serum- containing conditions studied in 12 patients, the increase in percentage of HbF was even greater, from 10.7% +/- 0.9% in control cultures to 22.5% +/- 2.6% with Steel factor. These increases in percentage of HbF were significant and dose-dependent. An increase in percentage of HbF was observed in erythroblasts harvested on day 11, 14, and 18 of culture. A decrease in mean picograms of total Hb per cell after coculture with Steel factor was noted, suggesting that growth kinetics influenced complete hemoglobinization. In serum- deprived conditions, picograms of HbF per cell was not affected by Steel factor, and in serum-containing conditions that augment in vitro HbF production it was enhanced. Thus, Steel factor stimulated a significant increase in percentage of HbF in erythroid cells from normal donors and patients with SCA in vitro.


Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1861-1868 ◽  
Author(s):  
BA Miller ◽  
SP Perrine ◽  
A Bernstein ◽  
SD Lyman ◽  
DE Williams ◽  
...  

A new hematopoietic growth factor (Steel factor) has been identified which stimulates erythroid proliferation both in vitro and in vivo. We evaluated the influence of recombinant Steel factor on hemoglobin synthesis in peripheral blood (PB) BFU-E-derived cells from normal donors by radioimmunoassay (RIA) and compared it with stimulation with GM-CSF and interleukin-3 (IL-3). Only Steel factor stimulated a significant increase in BFU-E-derived colony size and a significant increase in fetal hemoglobin (HbF) in BFU-E-derived erythroblasts from 0.49% +/- 0.27% to 6.33% +/- 1.11% in serum-deprived media and from 1.88% +/- 0.24% to 11.17% +/- 0.91% in serum. To determine whether this influence on hemoglobinization also occurred in sickle cell disease, we studied 13 patients with sickle cell disease. In serum-deprived conditions, there was a significant increase in the number and size of BFU-E-derived colonies with Steel factor that was dose-dependent. In addition, the proportion of HbF in progenitor-derived cells increased by 66% from 4.1% +/- 0.6% to 6.8% +/- 1.2% with Steel factor. In serum- containing conditions studied in 12 patients, the increase in percentage of HbF was even greater, from 10.7% +/- 0.9% in control cultures to 22.5% +/- 2.6% with Steel factor. These increases in percentage of HbF were significant and dose-dependent. An increase in percentage of HbF was observed in erythroblasts harvested on day 11, 14, and 18 of culture. A decrease in mean picograms of total Hb per cell after coculture with Steel factor was noted, suggesting that growth kinetics influenced complete hemoglobinization. In serum- deprived conditions, picograms of HbF per cell was not affected by Steel factor, and in serum-containing conditions that augment in vitro HbF production it was enhanced. Thus, Steel factor stimulated a significant increase in percentage of HbF in erythroid cells from normal donors and patients with SCA in vitro.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 973-973
Author(s):  
Rebecca M. Cafiero ◽  
Steven Holshouser ◽  
Craig Kutz ◽  
Julie Kanter ◽  
Patrick Woster

Abstract Background: Sickle cell disease (SCD) is the most common inherited blood disorder in the United States. Affected patients are at risk of multi-organ complications, significant morbidity and early mortality with an average age at death of 42 and 48 years for men and women, respectively. Complications include acute and chronic pain due to vascular occlusion, end organ damage, acute chest syndrome and increased risk of sepsis. SCD is caused by a point mutation on chromosome 11, which codes for the beta chain of adult hemoglobin. Fetal hemoglobin is not affected by the mutation. Persons with SCD who maintain persistent fetal hemoglobin demonstrate a decreased number of pain crises and acute chest episodes along with a decreased risk of mortality compared to other patients with SCD. The only FDA approved fetal hemoglobin inducer, Hydroxyurea, remains highly underutilized due to the risk of complications and unwanted side effects. The discovery of a new agent that promotes re-expression of fetal hemoglobin could revolutionize the care of affected patients by reducing morbidity and mortality. Epigenetic modulation is one possible mechanistic approach to accomplish this goal. Recent studies with lysine specific demethylase-1 (LSD1) inhibitors, including tranylcypromine (TCP) have shown promising results. Unfortunately, TCP also affects monoamine oxidase and thus has significant side effects. Developing a molecule with high specificity, low cross reactivity and negligible toxicity would increase desired effects while reducing unwanted side effects. Objectives: To discover small-molecule inhibitors of LSD1 that exhibit high selectivity for LSD1 and low in-vivo toxicity that can be used to promote re-expression of fetal hemoglobin in SCD patients. Design/Methods: Our laboratory at the Medical University of South Carolina has recently described a library of potent, non-toxic LSD1 inhibitors. Our preliminary results suggest that these inhibitors show promise as fetal hemoglobin inducers. Using K562 cells, an erythroleukemic cell line known to model in-vivo hemoglobin production, we are screening this library to identify the most effective compounds using Western blotting for the gamma globin chain that is unique to fetal hemoglobin. Following identification of the most effective compounds in initial screens, we will confirm results with RT-qPCR. Subsequent studies will involve culturing and treating erythroid progenitor cells from healthy subject samples and from patients with SCD obtained through bone marrow sampling. HPLC will be used for identification and quantification of hemoglobin chains, including fetal hemoglobin, after ex-vivo treatment with selected compounds. Results: Initial results from Western blots for fetal hemoglobin (gamma globin protein) demonstrate that TCP, as well as the experimental compounds C1, 107-3 and 107-15, promote the re-expression of fetal hemoglobin in K562 cells. Experimental compounds were compared to DMSO as negative control, and hemin (10 mM) and hydroxyurea (200 mM) as positive controls. All experimental compounds evaluated are significantly less toxic than hydroxyurea, and do not impact cell viability in trypan blue exclusion studies. Conclusion: Initial studies show promising results for fetal hemoglobin production using these novel LSD-1 inhibitors. Viability data is also encouraging. Continued investigation is warranted to further investigate the efficacy of these compounds. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 3198-3204 ◽  
Author(s):  
G Stamatoyannopoulos ◽  
CA Blau ◽  
B Nakamoto ◽  
B Josephson ◽  
Q Li ◽  
...  

Abstract Butyrate induces fetal hemoglobin (HbF) synthesis in cultures of erythroid progenitors, in primates, and in man. The mechanism by which this compound stimulates gamma-globin synthesis is unknown. In the course of butyrate catabolism, beta oxidation by mitochondrial enzymes results in the formation of two acetate molecules from each molecule of butyrate. Studies were performed to determine whether acetate itself induces HbF synthesis. In erythroid burst-forming unit (BFU-E) cultures from normal persons, and individuals with sickle cell disease and umbilical-cord blood, dose-dependent increases in gamma-globin protein and gamma mRNA were consistently observed in response to increasing acetate concentrations. In BFU-E cultures from normal adults and patients with sickle cell disease, the ratio of gamma/gamma + beta mRNA increased twofold to fivefold in response to acetate, whereas the percentage of BFU-E progeny staining with an anti-gamma monoclonal antibody (MoAb) increased approximately twofold. Acetate-induced increases in gamma-gene expression were also noted in the progeny of umbilical cord blood BFU-E, although the magnitude of change in response to acetate was less because of a higher baseline of gamma- chain production. The effect of acetate on HbF induction in vivo was evaluated using transgenic mouse and primate models. A transgenic mouse bearing a 2.5-kb mu locus control region (mu LCR) cassette linked to a 3.3-kb A gamma gene displayed a near twofold increase in gamma mRNA during a 10-day infusion of sodium acetate at a dose of 1.5 g/kg/d. Sodium acetate administration in baboons, in doses ranging from 1.5 to 6 g/kg/d by continuous intravenous infusion, also resulted in the stimulation of gamma-globin synthesis, with the percentage of HbF- containing reticulocytes (F reticulocytes) approaching 30%. Surprisingly, a dose-response effect of acetate on HbF induction was not observed in the baboons, and HbF induction was not sustained with prolonged acetate administration. These results suggest that both two- carbon fatty acids (acetate) and four-carbon fatty acids (butyrate) stimulate synthesis of HbF in vivo.


2008 ◽  
Vol 105 (33) ◽  
pp. 11869-11874 ◽  
Author(s):  
G. Lettre ◽  
V. G. Sankaran ◽  
M. A. C. Bezerra ◽  
A. S. Araujo ◽  
M. Uda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document