scholarly journals Analytical and Clinical Performance of the CDC Real Time RT-PCR Assay for Detection and Typing of Dengue Virus

2013 ◽  
Vol 7 (7) ◽  
pp. e2311 ◽  
Author(s):  
Gilberto A. Santiago ◽  
Edgardo Vergne ◽  
Yashira Quiles ◽  
Joan Cosme ◽  
Jesus Vazquez ◽  
...  
Author(s):  
Gilberto A. Santiago ◽  
Edgardo Vergne ◽  
Yashira Quiles ◽  
Joan Cosme ◽  
Jesus Vazquez ◽  
...  

Author(s):  
Kundan Tandel ◽  
Mahadevan Kumar ◽  
G.S. Bhalla ◽  
S.P.S. Shergill ◽  
Vijaya Swarnim ◽  
...  

2007 ◽  
Vol 29 ◽  
pp. S104-S105
Author(s):  
A. Dumoulin ◽  
H.P. Marti ◽  
M. Panning ◽  
H.H. Hirsch

2020 ◽  
Vol 165 (10) ◽  
pp. 2311-2315 ◽  
Author(s):  
M. B. Kakade ◽  
N. Shrivastava ◽  
J. A. Patil ◽  
D. Parashar ◽  
P. S. Shah ◽  
...  

2021 ◽  
Author(s):  
Yoshihiko Kiyasu ◽  
Masato Owaku ◽  
Yusaku Akashi ◽  
Yuto Takeuchi ◽  
Kenji Narahara ◽  
...  

Introduction Smart Gene is a point-of-care (POC)-type automated molecular testing platform that can be performed with 1 minute of hands-on-time. Smart Gene SARS-CoV-2 is a newly developed Smart Gene molecular assay for the detection of SARS-CoV-2. The analytical and clinical performance of Smart Gene SARS-CoV-2 has not been evaluated. Methods Nasopharyngeal and anterior nasal samples were prospectively collected from subjects referred to the local PCR center from March 25 to July 5, 2021. Two swabs were simultaneously obtained for the Smart Gene SARS-CoV-2 assay and the reference real-time RT-PCR assay, and the results of Smart Gene SARS-CoV-2 were compared to the reference real-time RT-PCR assay. Results Among a total of 1150 samples, 68 of 791 nasopharyngeal samples and 51 of 359 anterior nasal samples were positive for SARS-CoV-2 in the reference real-time RT-PCR assay. In the testing of nasopharyngeal samples, Smart Gene SARS-CoV-2 showed the total, positive and negative concordance of 99.2% (95% confidence interval [CI]: 98.4–99.7%), 94.1% (95% CI: 85.6–98.4%) and 99.7% (95% CI: 99.0–100%), respectively. For anterior nasal samples, Smart Gene SARS-CoV-2 showed the total, positive and negative concordance of 98.9% (95% CI: 97.2–99.7%), 98.0% (95% CI: 89.6–100%) and 99.0% (95% CI: 97.2–99.8%), respectively. In total, 5 samples were positive in the reference real-time RT-PCR and negative in Smart Gene SARS-CoV-2, whereas 5 samples were negative in the reference real-time RT-PCR and positive in Smart Gene SARS-CoV-2. Conclusion Smart Gene SARS-CoV-2 showed sufficient analytical performance for the detection of SARS-CoV-2 in nasopharyngeal and anterior nasal samples.


2020 ◽  
Author(s):  
Jean Claude Balingit ◽  
Thaddeus M. Carvajal ◽  
Mariko Saito-Obata ◽  
Maribet Gamboa ◽  
Amalea Dulcene Nicolasora ◽  
...  

Abstract Background: Vector control measures are critical in the prevention and reduction of dengue virus (DENV) transmission. In this context, effective vector control is reliant not only on knowledge of mosquito abundance, but also on the timely and accurate detection of mosquito infection. Mosquito-based virus surveillance programs commonly rely on pool-based mosquito testing, but whether individual-based mosquito testing could represent a feasible alternative is not largely studied. Applying an individual-based mosquito testing approach, we conducted a one-month DENV surveillance of adult Aedes aegypti mosquitoes around households of suspected dengue patients during the 2015 dengue peak season in Tarlac City, Philippines to more accurately assess the mosquito infection rate, and to identify the DENV serotypes and genotypes concurrently co-circulating in mosquitoes and patients. Methods: We performed a one-step multiplex real-time RT-PCR assay for the simultaneous detection and serotyping of DENV in patients and in individual female Ae. aegypti mosquito. Additionally, we performed sequencing and phylogenetic analyses to further characterize the detected DENVs in mosquitoes and patients at the genotype level. Results: We collected a total of 583 adult Ae. aegypti mosquitoes, of which we tested 359 female mosquitoes individually for the presence of the DENV. Ten mosquitoes (2.8%) from amongst 359 female mosquitoes were confirmed to be positive for the presence of the DENV. We detected DENV-1, DENV-2, and DENV-4 in the field-collected mosquitoes, which were consistent with the serotypes concurrently infecting patients. Sequencing and phylogenetic analyses of the detected DENVs based on the partial envelope (E) gene revealed three genotypes concurrently present in the sampled mosquitoes and patients during the study period, namely: DENV-1 genotype IV, DENV-2 Cosmopolitan genotype and DENV-4 genotype II. Conclusions: In this study, we demonstrate the utility of a one-step multiplex real-time RT-PCR assay in individual-based DENV surveillance of mosquitoes. Our findings reinforce the importance of detecting and monitoring virus activity in local mosquito populations, which is critical for dengue prevention and control activities.


2011 ◽  
Vol 177 (2) ◽  
pp. 168-173 ◽  
Author(s):  
Kien Duong Thi Hue ◽  
Trung Vu Tuan ◽  
Hanh Tien Nguyen Thi ◽  
Chau Tran Nguyen Bich ◽  
Huy Huynh Le Anh ◽  
...  
Keyword(s):  
Rt Pcr ◽  

Sign in / Sign up

Export Citation Format

Share Document