scholarly journals Large Direct Repeats Flank Genomic Rearrangements between a New Clinical Isolate of Francisella tularensis subsp. tularensis A1 and Schu S4

PLoS ONE ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. e9007 ◽  
Author(s):  
Ufuk Nalbantoglu ◽  
Khalid Sayood ◽  
Michael P. Dempsey ◽  
Peter C. Iwen ◽  
Stephen C. Francesconi ◽  
...  
2010 ◽  
Vol 93 (6) ◽  
pp. 1930-1943 ◽  
Author(s):  
Anders Johansson ◽  
Jeannine M Petersen

Abstract Francisella tularensis is a facultative, intracellular, zoonotic pathogen and the causative agent of tularemia. Historically, F. tularensis has been subdivided into subspecies on the basis of phenotypic traits, including biochemical reactivity and virulence. More recently, a number of genotypic methods, ranging from relatively insensitive methods to full genome sequencing, have been used to investigate genetic diversity within F. tularensis. These analyses indicate that F. tularensis is a pathogen of low sequence diversity with pair-wise average nucleotide identities >99.2 across subspecies. Nonetheless, genomic rearrangements and sequence deletions exist between and within F. tularensis subspecies, creating polymorphisms detectable by genotyping methods. Genetic subpopulations intermediate to the subspecies and strain level have been identified within F. tularensis subsp. tularensis and F. tularensis subsp. holarctica by several different typing methods. These genetic subpopulations have been associated with differences in disease severity, geographic distribution, and transmission patterns. For example, one F. tularensis subsp. tularensis subpopulation has been found to be significantly associated with mortality in humans. Additionally, genotypic analyses of Francisella spp. have provided information for use in the rational design of strain panels for validation of F. tularensis diagnostic tests. This review provides a guide to the various F. tularensis genotyping methods.


2008 ◽  
Vol 77 (1) ◽  
pp. 152-161 ◽  
Author(s):  
Aiping Qin ◽  
David W. Scott ◽  
Jennifer A. Thompson ◽  
Barbara J. Mann

ABSTRACT Francisella tularensis, the highly virulent etiologic agent of tularemia, is a low-dose intracellular pathogen that is able to escape from the phagosome and replicate in the cytosol. Although there has been progress in identifying loci involved in the pathogenicity of this organism, analysis of the genome sequence has revealed few obvious virulence factors. We previously reported isolation of an F. tularensis subsp. tularensis strain Schu S4 transposon insertion mutant with a mutation in a predicted hypothetical lipoprotein, FTT1103, that was deficient in intracellular replication in HepG2 cells. In this study, a mutant with a defined nonpolar deletion in FTT1103 was created, and its phenotype, virulence, and vaccine potential were characterized. A phagosomal integrity assay and lysosome-associated membrane protein 1 colocalization revealed that ΔFTT1103 mutant bacteria were defective in phagosomal escape. FTT1103 mutant bacteria were maximally attenuated in the mouse model; mice survived, without visible signs of illness, challenge by more than 1010 CFU when the intranasal route was used and challenge by 106 CFU when the intraperitoneal, subcutaneous, or intravenous route was used. The FTT1103 mutant bacteria exhibited dissemination defects. Mice that were infected by the intranasal route had low levels of bacteria in their livers and spleens, and these bacteria were cleared by 3 days postinfection. Mutant bacteria inoculated by the subcutaneous route failed to disseminate to the lungs. BALB/c or C57BL/6 mice that were intranasally vaccinated with 108 CFU of FTT1103 mutant bacteria were protected against subsequent challenge with wild-type strain Schu S4. These experiments identified the FTT1103 protein as an essential virulence factor and also demonstrated the feasibility of creating defined attenuated vaccines based on a type A strain.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 638
Author(s):  
Julie A. Lovchik ◽  
Douglas S. Reed ◽  
Julie A. Hutt ◽  
Fangfang Xia ◽  
Rick L. Stevens ◽  
...  

Pneumonic tularemia is a highly debilitating and potentially fatal disease caused by inhalation of Francisella tularensis. Most of our current understanding of its pathogenesis is based on the highly virulent F. tularensis subsp. tularensis strain SCHU S4. However, multiple sources of SCHU S4 have been maintained and propagated independently over the years, potentially generating genetic variants with altered virulence. In this study, the virulence of four SCHU S4 stocks (NR-10492, NR-28534, NR-643 from BEI Resources and FTS-635 from Battelle Memorial Institute) along with another virulent subsp. tularensis strain, MA00-2987, were assessed in parallel. In the Fischer 344 rat model of pneumonic tularemia, NR-643 and FTS-635 were found to be highly attenuated compared to NR-10492, NR-28534, and MA00-2987. In the NZW rabbit model of pneumonic tularemia, NR-643 caused morbidity but not mortality even at a dose equivalent to 500x the LD50 for NR-10492. Genetic analyses revealed that NR-10492 and NR-28534 were identical to each other, and nearly identical to the reference SCHU S4 sequence. NR-643 and FTS-635 were identical to each other but were found to have nine regions of difference in the genomic sequence when compared to the published reference SCHU S4 sequence. Given the genetic differences and decreased virulence, NR-643/FTS-635 should be clearly designated as a separate SCHU S4 substrain and no longer utilized in efficacy studies to evaluate potential vaccines and therapeutics against tularemia.


2016 ◽  
Vol 14 (1) ◽  
Author(s):  
Crystal N. Propst ◽  
Albert O. Nwabueze ◽  
Igor L. Kanev ◽  
Rachel E. Pepin ◽  
Bradford W. Gutting ◽  
...  

2007 ◽  
Vol 75 (6) ◽  
pp. 3089-3101 ◽  
Author(s):  
Jingliang Su ◽  
Jun Yang ◽  
Daimin Zhao ◽  
Thomas H. Kawula ◽  
Jeffrey A. Banas ◽  
...  

ABSTRACT Francisella tularensis is a gram-negative pathogen that causes life-threatening infections in humans and has potential for use as a biological weapon. The genetic basis of the F. tularensis virulence is poorly understood. This study screened a total of 3,936 transposon mutants of the live vaccine strain for infection in a mouse model of respiratory tularemia by signature-tagged mutagenesis. We identified 341 mutants attenuated for infection in the lungs. The transposon disruptions were mapped to 95 different genes, virtually all of which are also present in the genomes of other F. tularensis strains, including human pathogenic F. tularensis strain Schu S4. A small subset of these attenuated mutants carried insertions in the genes encoding previously known virulence factors, but the majority of the identified genes have not been previously linked to F. tularensis virulence. Among these are genes encoding putative membrane proteins, proteins associated with stress responses, metabolic proteins, transporter proteins, and proteins with unknown functions. Several attenuated mutants contained disruptions in a putative capsule locus which partially resembles the poly-γ-glutamate capsule biosynthesis locus of Bacillus anthracis, the anthrax agent. Deletional mutation analysis confirmed that this locus is essential for F. tularensis virulence.


2008 ◽  
Vol 62 (1) ◽  
pp. 208-210 ◽  
Author(s):  
Eric Valade ◽  
Josée Vaissaire ◽  
Audrey Mérens ◽  
Eric Hernandez ◽  
Chantal Gros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document