tularensis subsp
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 27)

H-INDEX

21
(FIVE YEARS 3)

Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 108
Author(s):  
Vitaly Pavlov ◽  
Galina Vakhrameeva ◽  
Alexander Mokrievich ◽  
Mikhail E. Platonov ◽  
Galina Titareva ◽  
...  

The genomic analysis of all subspecies F. tularensis, as found in Gen Bank NCBI, reveals the presence of genes encoding proteins like to the multifunctional RecBCD enzyme complex in E. coli and other bacteria. To date, the role of the recD gene in F. tularensis, which encodes the alpha chain of exonuclease V, in DNA metabolism processes, has not been studied either in vitro or in vivo. F. tularensis subsp. holarctica 15 NIIEG, a vaccine strain, served as the basis to create the F. tularensis 15D strain with recD deletion. The lack of the recD gene suppresses the integration of suicide plasmids with F. tularensis genome fragments into the chromosome. The modified strain showed reduced growth in vitro and in vivo. This study shows that such deletion significantly reduces the virulence of the strain in BALB/c mice.


2021 ◽  
Author(s):  
Lee Ling Tan ◽  
Elena Heng ◽  
Nadiah Zulkarnain ◽  
Chuang Yan Leong ◽  
Veronica Ng ◽  
...  

In recent years, CRISPR-Cas toolboxes for Streptomyces editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are also oftentimes strain dependent, subsequently a variety of Cas proteins would allow for flexibility and enable genetic manipulation within a wider range of Streptomyces strains. In this work, we have further expanded the Cas toolbox by presenting the first example of Cas12j mediated editing in Streptomyces sp. A34053. In our study, we have also observed significantly improved editing efficiencies with Acidaminococcus sp. Cas12j compared to Cas12a, Francisella tularensis subsp. novicida U112's type V-A Cas (FnCpf1).


Author(s):  
M. V. Tsimbalistova ◽  
V. M. Sorokin ◽  
N. V. Aronova ◽  
A. S. Anisimova ◽  
N. L. Pichurina ◽  
...  

Objective of the study was to investigate biological properties and genetic characteristics of tularemia agent strains isolated from natural foci of the Rostov Region in 2020.Materials and methods. Field material from natural foci of the Rostov Region was examined by serological, bacteriological, biological, and molecular-genetic methods. Cultural-morphological, biochemical, antigenic and pathogenic properties of isolated cultures were studied. Protein profles were obtained through MALDI-TOF MS using mass spectrometer Autoflex speed III Bruker Daltonics and Flex Control of Biotyper software. The genetic characteristics of the strains were determined by VNTR and INDEL typing and SNP analysis.Results and discussion. Six strains of tularemia pathogen were isolated from mouse-like rodents using biological method. The investigation of their biological features and data of PCR analysis and INDEL typing with canonical markers showed that all strains are typical representatives of the Francisella tularensis subsp. holarctica biovar EryR. VNTR typing by six genetic loci revealed that all strains belong to four individual genotypes. The strain isolated in 2020 in the Salsky district was identical to the strain which was isolated in the same area in 1989. Based on the whole genome sequencing of two strains, we established that they are closest to the cultures isolated in Turkey (2009, 2012) and Khanty-Mansiysk (2013) by the studied set of SNP markers. Thus, we found that both identical (or closely related) clones of the tularemia agent and new strains with unique genotypes which previously were not described for the Rostov Region can circulate in natural foci of this region for a long period of time.


2021 ◽  
Vol 57 (4) ◽  
Author(s):  
Simone R. R. Pisano ◽  
Sonja Kittl ◽  
Ulrike Eulenberger ◽  
Joerg Jores ◽  
Francesco C. Origgi

Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 992
Author(s):  
Kendall Souder ◽  
Emma J. Beatty ◽  
Siena C. McGovern ◽  
Michael Whaby ◽  
Emily Young ◽  
...  

The phenoxazine dye resazurin exhibits bactericidal activity against the Gram-negative pathogens Francisella tularensis and Neisseria gonorrhoeae. One resazurin derivative, resorufin pentyl ether, significantly reduces vaginal colonization by Neisseria gonorrhoeae in a mouse model of infection. The narrow spectrum of bacteria susceptible to resazurin and its derivatives suggests these compounds have a novel mode of action. To identify potential targets of resazurin and mechanisms of resistance, we isolated mutants of F. tularensis subsp. holarctica live vaccine strain (LVS) exhibiting reduced susceptibility to resazurin and performed whole genome sequencing. The genes pilD (FTL_0959) and dipA (FTL_1306) were mutated in half of the 46 resazurin-resistant (RZR) strains sequenced. Complementation of select RZR LVS isolates with wild-type dipA or pilD partially restored sensitivity to resazurin. To further characterize the role of dipA and pilD in resazurin susceptibility, a dipA deletion mutant, ΔdipA, and pilD disruption mutant, FTL_0959d, were generated. Both mutants were less sensitive to killing by resazurin compared to wild-type LVS with phenotypes similar to the spontaneous resazurin-resistant mutants. This study identified a novel role for two genes dipA and pilD in F. tularensis susceptibility to resazurin.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 938
Author(s):  
Sonia Martínez-Martínez ◽  
Elías-Fernando Rodríguez-Ferri ◽  
David Rodríguez-Lázaro ◽  
Marta Hernández ◽  
José-Ignacio Gómez-Campillo ◽  
...  

A collection of 177 Francisella tularensis subsp. holarctica clinical isolates (29 from humans and 148 from animals, mainly hares and voles) was gathered from diverse tularemia outbreaks in the Castilla y León region (northwestern Spain) that occurred from the end of the 20th century to the 2020s. Along with four F. tularensis subsp. holarctica reference strains, all of these clinical isolates were tested using a broth microdilution method to determine their susceptibility to 22 antimicrobial agents, including β-lactams, aminoglycosides and one member each of the tetracycline, glycylcycline, quinolone and sulphonamide classes. Many multi-resistance profiles were found among the tested isolates, but especially among those of human origin (all but two isolates showed resistance to at least 13 of 18 antimicrobial agents). Even so, all human isolates were susceptible to gentamicin and tobramycin, while more than 96% of animal isolates were susceptible to these two aminoglycosides. Ciprofloxacin showed activity against more than 92% of animal and human isolates. However, almost 21% of human isolates were resistant to tetracycline, and more than 65% were resistant to tigecycline. Finally, a quite similar activity to other F. tularensis subsp. holarctica isolates collected 20 years earlier in Spain was observed.


2021 ◽  
Vol 9 (7) ◽  
pp. 1407
Author(s):  
Mateusz Markowicz ◽  
Anna-Margarita Schötta ◽  
Freya Penatzer ◽  
Christoph Matscheko ◽  
Gerold Stanek ◽  
...  

Ulceroglandular tularemia is caused by the transmission of Francisella tularensis by arthropods to a human host. We report a case of tick-borne tularemia in Austria which was followed by an abscess formation in a lymph node, making drainage necessary. F. tularensis subsp. holarctica was identified by PCR and multilocus sequence typing.


2021 ◽  
Vol 9 (7) ◽  
pp. 1398
Author(s):  
Camille D. Brunet ◽  
Aurélie Hennebique ◽  
Julien Peyroux ◽  
Isabelle Pelloux ◽  
Yvan Caspar ◽  
...  

In 2018, the incidence of tularemia increased twofold in the west of France, with many pneumonic forms, suggesting environmental sources of infection. We investigated the presence of Francisella tularensis subsp. holarctica and other Francisella species DNA in the natural aquatic environment of this geographic area. Two sampling campaigns, in July 2019 and January 2020, allowed the collection of 87 water samples. Using a combination of real-time PCR assays, we tested the presence of either Francisella sp., F. tularensis/F. novicida, and F. tularensis subsp. holarctica, the latter being the only tularemia agent in Europe. Among 57 water samples of the first campaign, 15 (26.3%) were positive for Francisella sp., nine (15.8%) for F. tularensis and/or F. novicida, and four (7.0%) for F. tularensis subsp. holarctica. Ratios were 25/30 (83.3%), 24/30 (80.0%), and 4/30 (13.3%) for the second campaign. Among the thirty sites sampled during the two campaigns, nine were positive both times for Francisella sp., seven for F. tularensis and/or F. novicida, and one for F. tularensis subsp. holarctica. Altogether, our study reveals a high prevalence of Francisella sp. DNA (including the tularemia agent) in the studied aquatic environment. This aquatic environment could therefore participate in the endemicity of tularemia in the west of France.


2021 ◽  
Vol 66 (6) ◽  
pp. 353-357
Author(s):  
S. S. Vetchinin ◽  
Anton Georgievich Shevyakov ◽  
A. E. Khomyakov ◽  
R. I. Mironova ◽  
A. N. Mokrievich ◽  
...  

Tularemia is an especially dangerous infection caused by the gram-negative bacterium Francisella tularensis. It belongs to natural focal infections, and therefore is under continuous control by quarantine services. When carrying out their activities they use a whole range of diagnostic tools. The objective of this research is to develop an enzyme immunoassay based on highly specific monoclonal antibodies and immunomagnetic particles for monitoring the tularemia pathogen. To produce hybridomas mice were immunized with cells of the vaccine strain F. tularensis subsp. holarctica 15 NIIEG. After cell fusion hybridomas were selected by a solid-phase enzyme immunoassay (ELISA) using lipopolysaccharide (LPS) of the tularemia microbe. As a result, two hybridomas, 1C2 and 3F5, were produced. MABs of the hybridomas were obtained by using BALB / c mice. The MABs were purified by sepharose A affinity chromatography and used for conjugation with magnetic particles, and for biotinylation followed by matching a pair for ELISA. The pair of IMPs and MABs 3F5 as well as biotinylated FB11-x MABs was the best in detecting tularemia cells. The use of this MAB pair in ELISA allowed the identification of 105 microbial cells/ml in a 4 ml sample and 5×103 microbial cells/ml in a 45ml sample. Interaction with F. tularensis subsp. novicida Utah112 cells was absent.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 638
Author(s):  
Julie A. Lovchik ◽  
Douglas S. Reed ◽  
Julie A. Hutt ◽  
Fangfang Xia ◽  
Rick L. Stevens ◽  
...  

Pneumonic tularemia is a highly debilitating and potentially fatal disease caused by inhalation of Francisella tularensis. Most of our current understanding of its pathogenesis is based on the highly virulent F. tularensis subsp. tularensis strain SCHU S4. However, multiple sources of SCHU S4 have been maintained and propagated independently over the years, potentially generating genetic variants with altered virulence. In this study, the virulence of four SCHU S4 stocks (NR-10492, NR-28534, NR-643 from BEI Resources and FTS-635 from Battelle Memorial Institute) along with another virulent subsp. tularensis strain, MA00-2987, were assessed in parallel. In the Fischer 344 rat model of pneumonic tularemia, NR-643 and FTS-635 were found to be highly attenuated compared to NR-10492, NR-28534, and MA00-2987. In the NZW rabbit model of pneumonic tularemia, NR-643 caused morbidity but not mortality even at a dose equivalent to 500x the LD50 for NR-10492. Genetic analyses revealed that NR-10492 and NR-28534 were identical to each other, and nearly identical to the reference SCHU S4 sequence. NR-643 and FTS-635 were identical to each other but were found to have nine regions of difference in the genomic sequence when compared to the published reference SCHU S4 sequence. Given the genetic differences and decreased virulence, NR-643/FTS-635 should be clearly designated as a separate SCHU S4 substrain and no longer utilized in efficacy studies to evaluate potential vaccines and therapeutics against tularemia.


Sign in / Sign up

Export Citation Format

Share Document